Sujet : Prolog Tribute to Hao Wang
De : janburse (at) *nospam* fastmail.fm (Mild Shock)
Groupes : comp.lang.prologDate : 06. Dec 2024, 21:15:37
Autres entêtes
Message-ID : <vivm19$t816$1@solani.org>
User-Agent : Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.19
This code here doesn’t make much sense:
prove(L --> R):-
member(A => B,L),
del(A => B,L,NewL),!,
One can combine member/2 and del/3 into select/3. select/3
together with member/2 is part of the Prologue to Prolog:
**A Prologue for Prolog (working draft)**
https://www.complang.tuwien.ac.at/ulrich/iso-prolog/prologueSo if I further strip away using a two sided sequent,
I can implement Hoa Wangs implication fagment:
P1. Initial rule: if λ, ζ are strings of atomic
formulae, then λ -> ζ is a theorem if some atomic
formula occurs an both sides of the arrow.
P5a. Rule —> => If ζ, φ -> λ, ψ, ρ, then ζ -> λ, φ => ψ, ρ
P5b. Rule => -> If λ, ψ, ρ -> π and λ, ρ -> π, φ then λ, φ => ψ, ρ -> π
(Hao Wang. Toward Mechanical Mathematics. IBM
Journal of Research and Development 4:1 (1960), 15.)
as follows in 3 lines:
prove(L) :- select((A->B),L,R), !, prove([-A,B|R]).
prove(L) :- select(-(A->B),L,R), !, prove([A|R]), prove([-B|R]).
prove(L) :- select(-A,L,R), member(A,R), !.
Seems to work, I can prove Peirce Law:
?- prove([(((p->q)->p)->p)]).
true.
See also:
**Hao Wang on the formalisation of mathematics**
Lawrence C. Paulson 26 Jul 2023
https://lawrencecpaulson.github.io/2023/07/26/Wang.html