Sujet : Re: variant_term/2 is faster than variant/1 (Was: Request for comments, Novacore the sequel to ISO modules)
De : janburse (at) *nospam* fastmail.fm (Mild Shock)
Groupes : comp.lang.prologDate : 12. Oct 2024, 22:16:30
Autres entêtes
Message-ID : <veeove$bbu7$1@solani.org>
References : 1 2 3 4
User-Agent : Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.19
How much faster is it?
Here some test harness:
test :- length(L, 6), length(R, 6),
enum_list(_, L), enum_list(_, R),
variant(L, R), fail; true.
test2 :- length(L, 6), length(R, 6),
enum_list(_, L), enum_list(_, R),
variant_term(L, R), fail; true.
Here some results:
- SWI-Prolog 9.3.11:
?- time(test).
% 2,126,498 inferences, 0.734 CPU in 0.752 seconds
(98% CPU, 2895657 Lips)
true.
?- time(test2).
% 2,159,795 inferences, 0.234 CPU in 0.236 seconds
(99% CPU, 9215125 Lips)
true.
- Trealla Prolog 2.57.16:
?- time(test).
% Time elapsed 3.128s, 14827949 Inferences, 4.741 MLips
true.
?- time(test2).
% Time elapsed 1.079s, 7775516 Inferences, 7.206 MLips
true.
- Scryer Prolog :
?- time(test3).
% CPU time: 5.653s, 5_192_831 inferences
true.
?- time(test2).
% CPU time: 1.544s, 6_116_163 inferences
true.
Note: test3 is like test, only it uses builtins:variant/2.
Mild Shock schrieb:
The ISO core standard probably set the
stage for a couple of performance sins.
In 7.1.6.1 Variants of a term we find
these test cases:
- f(A, B, A) is a variant of f(X, Y, X).
- g(A, B) is a variant of g(_, _).
- P+Q is a variant of P+Q.
What is doubious here, is the last test
case with P+Q. Do we need to test terms
that have common variables?
Lets assume we have situations where we
don't need variant working with common
variables in the two argument terms, what
about then using this bootstrapping:
variant_term(X, Y) :-
subsumes_term(X, Y),
subsumes_term(Y, X).
Here some testing, does it work ok? Take this code:
enum_arg(_, 1).
enum_arg(_, _).
enum_arg(X, X).
enum_list(_, []).
enum_list(X, [H|T]) :- enum_arg(X, H), enum_list(X, T).
boole(G, 1) :- G, !.
boole(_, 0).
nok(L, R) :- length(L, 6), length(R, 6),
enum_list(_, L), enum_list(_, R),
boole(variant(L, R), A), boole(variant_term(L, R), B),
A \== B.
Seems to work fine:
?- nok(L, R).
false.