Re: I have always been correct about emulating termination analyzers --- PROOF

Liste des GroupesRevenir à c theory 
Sujet : Re: I have always been correct about emulating termination analyzers --- PROOF
De : polcott333 (at) *nospam* gmail.com (olcott)
Groupes : comp.theory comp.lang.c
Suivi-à : comp.theory
Date : 20. Oct 2024, 16:32:45
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vf37qt$fbb3$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
User-Agent : Mozilla Thunderbird
On 10/20/2024 6:46 AM, Richard Damon wrote:
On 10/19/24 11:20 PM, olcott wrote:
On 10/19/2024 9:27 PM, Richard Damon wrote:
On 10/19/24 8:13 PM, olcott wrote:
>
You are directly contradicting the verified fact that DDD
emulated by HHH according to the semantics of the x86 language
cannot possibly reach its own "return" instruction and halt.
>
>
But that isn't what the question being asked
>
Sure it is. You are just in psychological denial as proven by
the fact that all attempted rebuttals (yours and anyone else's)
to the following words have been baseless.
>
Does the input DDD to HHH specify a halting computation?
 Which it isn't, but is a subtle change of the actual question.
 The actual question (somewhat informally stated, but from the source you like to use) says:
 In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever.
 
That is the problem. Because it is too informally stated
it can be misunderstood. No one ever intended for any
termination analyzer to ever report on anything besides
the behavior that its input actually specifies.

So, DDD is the COMPUTER PROGRAM to be decided on,
No not at all. When DDD is directly executed it specifies a
different sequence of configurations than when DDD is emulated
by HHH according to the semantics of the x86 language.
On 10/14/2022 7:44 PM, Ben Bacarisse wrote:
 > ... PO really /has/ an H (it's trivial to do for this one case)
 > that correctly determines that P(P) *would* never stop running
 > *unless* aborted.
That everyone has always believed that a termination analyzer
must report on behavior that it does not see is the same sort
of mistake as believing that a set can be a member of itself.
Eliminate the false assumption and the issue is resolved.

and is converted to a DESCRIPTION of that program to be the input to the decider, and THAT is the input.
 So, the question has ALWAYS been about the behavior of the program (an OBJECTIVE standard, meaning the same to every decider the question is posed to).
 
Then it is the same error as a set defined as a member of itself.
The ZFC resolution to Russell's Paradox sets the precedent that
discarding false assumptions can be a path to a solution.

(where a halting computation is defined as)
>
DDD emulated by HHH according to the semantics of the x86
language reaches its own "return" instruction final state.
 Except that isn't the definition of halting, as you have been told many times, but apparently you can't undetstand.
 
Sure and if everyone stuck with the "we have always done it that way
therefore you can't change it" ZFC would have been rejected out-of-hand
and Russell's Paradox would remain unresolved.

Halting is a property of the PROGRAM. It is the property, as described in the question, of will the program reach a final state if it is run, or will it never reach such a final state.
 
Much more generically at the philosophical foundations of logic
level all logic systems merely apply finite string transformation
rules to finite strings. Formal mathematical systems apply truth
preserving operations to finite strings having the Boolean value
of true.

DDD emulated by HHH is a standing for that only if HHH never aborts its emulation. But, since your HHH that answer must abort its emulation, your criteria is just a bunch of meaningless gobbledygook.
 It seems that a major part of the problem is you CHOSE to be ignorant of the rules of the system, but learned it by what you call "First Principles" (but you don't understand the term) by apparently trying to derive the core principles of the system on your own. This is really a ZERO Principle analysis, and doesn't get you the information you actually need to use.
 
ZFC did the same thing and successfully rejected the false assumption
that a set can be a member of itself.

A "First Principles" approach that you refer to STARTS with an study and understanding of the actual basic principles of the system. That would be things like the basic definitions of things like "Program", "Halting" "Deciding", "Turing Machine", and then from those concepts, sees what can be done, without trying to rely on the ideas that others have used, but see if they went down a wrong track, and the was a different path in the same system.
 
The actual barest essence for formal systems and computations
is finite string transformation rules applied to finite strings.
The next minimal increment of further elaboration is that some
finite strings has an assigned or derived property of Boolean
true. At this point of elaboration Boolean true has no more
semantic meaning than FooBar.
Some finite strings are assigned the FooBar property and other
finite string derive the FooBar property by applying FooBar
preserving operations to the first set.
Once finite strings have the FooBar property we can define
computations that apply Foobar preserving operations to
determine if other finite strings also have this FooBar property.

It seems you never even learned the First Principles of Logic Systems, bcause you don't understand that Formal Systems are built from their definitions, and those definitions can not be changed and let you stay in the same system.
 
The actual First Principles are as I say they are: Finite string
transformation rules applied to finite strings. What you are
referring to are subsequent principles that have added more on
top of the actual first principles.
--
Copyright 2024 Olcott "Talent hits a target no one else can hit; Genius
hits a target no one else can see." Arthur Schopenhauer

Date Sujet#  Auteur
18 Oct 24 * A state transition diagram proves ...142olcott
18 Oct 24 `* Re: A state transition diagram proves ...141Richard Damon
18 Oct 24  `* Re: A state transition diagram proves ...140olcott
18 Oct 24   `* Re: A state transition diagram proves ...139Richard Damon
18 Oct 24    `* Re: A state transition diagram proves ...138olcott
18 Oct 24     `* Re: A state transition diagram proves ...137Richard Damon
18 Oct 24      `* Re: A state transition diagram proves ... GOOD PROGRESS136olcott
18 Oct 24       +* Re: A state transition diagram proves ... GOOD PROGRESS24joes
18 Oct 24       i`* Re: A state transition diagram proves ... GOOD PROGRESS23olcott
18 Oct 24       i +- Re: A state transition diagram proves ... GOOD PROGRESS -- I only wanted to cross post this key break through once.1olcott
18 Oct 24       i +* Re: A state transition diagram proves ... GOOD PROGRESS14joes
18 Oct 24       i i`* Re: A state transition diagram proves ... GOOD PROGRESS13olcott
18 Oct 24       i i `* Re: A state transition diagram proves ... GOOD PROGRESS12joes
18 Oct 24       i i  `* Re: A state transition diagram proves ... GOOD PROGRESS11olcott
18 Oct 24       i i   `* Re: A state transition diagram proves ... GOOD PROGRESS10Alan Mackenzie
18 Oct 24       i i    `* Re: A state transition diagram proves ... GOOD PROGRESS9olcott
18 Oct 24       i i     `* Re: A state transition diagram proves ... GOOD PROGRESS8joes
18 Oct 24       i i      `* Re: A state transition diagram proves ... GOOD PROGRESS7olcott
18 Oct 24       i i       +- Re: A state transition diagram proves ... GOOD PROGRESS1olcott
19 Oct 24       i i       `* Re: A state transition diagram proves ... GOOD PROGRESS5joes
19 Oct 24       i i        `* Re: A state transition diagram proves ... GOOD PROGRESS4olcott
19 Oct 24       i i         `* Re: A state transition diagram proves ... GOOD PROGRESS3Richard Damon
19 Oct 24       i i          `* Re: A state transition diagram proves ... GOOD PROGRESS2olcott
19 Oct 24       i i           `- Re: A state transition diagram proves ... GOOD PROGRESS1Richard Damon
19 Oct 24       i `* Re: A state transition diagram proves ... GOOD PROGRESS7Richard Damon
19 Oct 24       i  `* Re: A state transition diagram proves ... GOOD PROGRESS6olcott
19 Oct 24       i   `* Re: A state transition diagram proves ... GOOD PROGRESS5Richard Damon
19 Oct 24       i    `* Re: A state transition diagram proves ... GOOD PROGRESS4olcott
19 Oct 24       i     `* Re: A state transition diagram proves ... GOOD PROGRESS3Richard Damon
19 Oct 24       i      `* Re: A state transition diagram proves ... GOOD PROGRESS2olcott
19 Oct 24       i       `- Re: A state transition diagram proves ... GOOD PROGRESS1Richard Damon
19 Oct 24       `* Re: A state transition diagram proves ... GOOD PROGRESS111Richard Damon
19 Oct 24        +- Re: A state transition diagram proves ... GOOD PROGRESS1olcott
19 Oct 24        `* THREE DIFFERENT QUESTIONS109olcott
19 Oct 24         `* Re: THREE DIFFERENT QUESTIONS108Richard Damon
19 Oct 24          `* Re: THREE DIFFERENT QUESTIONS107olcott
19 Oct 24           `* Re: THREE DIFFERENT QUESTIONS106Richard Damon
19 Oct 24            `* Re: THREE DIFFERENT QUESTIONS105olcott
19 Oct 24             `* Re: THREE DIFFERENT QUESTIONS104Richard Damon
20 Oct 24              `* Re: THREE DIFFERENT QUESTIONS103olcott
20 Oct 24               `* Re: THREE DIFFERENT QUESTIONS102Richard Damon
20 Oct 24                `* I have always been correct about emulating termination analyzers --- PROOF101olcott
20 Oct 24                 +* Re: I have always been correct about emulating termination analyzers --- PROOF99Richard Damon
20 Oct 24                 i`* Re: I have always been correct about emulating termination analyzers --- PROOF98olcott
20 Oct 24                 i +* Re: I have always been correct about emulating termination analyzers --- PROOF10Richard Damon
20 Oct 24                 i i+* Re: I have always been correct about emulating termination analyzers --- PROOF2olcott
20 Oct 24                 i ii`- Re: I have always been incorrect about emulating termination analyzers --- PROOF1Richard Damon
20 Oct 24                 i i+* Re: I have always been correct about emulating termination analyzers --- PROOF2olcott
20 Oct 24                 i ii`- Re: I have always been incorrect about emulating termination analyzers --- PROOF1Richard Damon
20 Oct 24                 i i`* Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L5olcott
21 Oct 24                 i i +- Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L1Richard Damon
21 Oct 24                 i i `* Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L3Richard Damon
21 Oct 24                 i i  `* Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L2olcott
21 Oct 24                 i i   `- Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L1Richard Damon
21 Oct 24                 i `* Re: I have always been correct about emulating termination analyzers --- PROOF87Mikko
21 Oct 24                 i  `* Re: I have always been correct about emulating termination analyzers --- PROOF86olcott
22 Oct 24                 i   `* Re: I have always been correct about emulating termination analyzers --- PROOF85Mikko
22 Oct 24                 i    `* Re: I have always been correct about emulating termination analyzers --- PROOF84olcott
23 Oct 24                 i     `* Re: I have always been correct about emulating termination analyzers --- PROOF83Mikko
23 Oct 24                 i      `* Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs82olcott
24 Oct 24                 i       +- Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs1Richard Damon
24 Oct 24                 i       `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs80Mikko
24 Oct 24                 i        `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs79olcott
25 Oct 24                 i         +* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs5Richard Damon
25 Oct 24                 i         i`* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs4olcott
25 Oct 24                 i         i `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs3Richard Damon
25 Oct 24                 i         i  `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs2olcott
25 Oct 24                 i         i   `- Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs1Richard Damon
25 Oct 24                 i         `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs73Mikko
25 Oct 24                 i          `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs72olcott
25 Oct 24                 i           +* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs36Richard Damon
25 Oct 24                 i           i`* Gödel's actual proof and deriving all of the digits of the actual Gödel numbers35olcott
26 Oct 24                 i           i `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers34Richard Damon
26 Oct 24                 i           i  `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers33olcott
26 Oct 24                 i           i   +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers30Richard Damon
26 Oct 24                 i           i   i`* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers29olcott
26 Oct 24                 i           i   i +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
27 Oct 24                 i           i   i `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers27Mikko
27 Oct 24                 i           i   i  +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2joes
28 Oct 24                 i           i   i  i`- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Mikko
27 Oct 24                 i           i   i  `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers24olcott
27 Oct 24                 i           i   i   +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
28 Oct 24                 i           i   i   `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers22Mikko
28 Oct 24                 i           i   i    `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers21olcott
29 Oct 24                 i           i   i     +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers5Richard Damon
29 Oct 24                 i           i   i     i`* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers4olcott
29 Oct 24                 i           i   i     i +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2André G. Isaak
29 Oct 24                 i           i   i     i i`- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1olcott
29 Oct 24                 i           i   i     i `- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
29 Oct 24                 i           i   i     `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers15Mikko
29 Oct 24                 i           i   i      `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers14olcott
30 Oct 24                 i           i   i       +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
30 Oct 24                 i           i   i       `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers12Mikko
30 Oct 24                 i           i   i        `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers11olcott
31 Oct 24                 i           i   i         +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
31 Oct 24                 i           i   i         `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers9Mikko
31 Oct 24                 i           i   i          `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers8olcott
31 Oct 24                 i           i   i           +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers3joes
31 Oct 24                 i           i   i           i`* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2olcott
1 Nov 24                 i           i   i           i `- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
1 Nov 24                 i           i   i           +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
1 Nov 24                 i           i   i           `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers3Mikko
26 Oct 24                 i           i   `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2joes
26 Oct 24                 i           `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs35Mikko
20 Oct 24                 `- Re: I have always been correct about emulating termination analyzers --- PROOF1Richard Damon

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal