Sujet : Re: Real Number --- Merely numbers whose digits can be infinitely long
De : wyniijj5 (at) *nospam* gmail.com (wij)
Groupes : comp.theoryDate : 02. May 2024, 04:03:33
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <b903715ba20b5f40fb4bbcd1640e8ade97a233ac.camel@gmail.com>
References : 1 2 3 4 5 6
User-Agent : Evolution 3.50.2 (3.50.2-1.fc39)
On Wed, 2024-05-01 at 18:38 -0700, Keith Thompson wrote:
wij <wyniijj5@gmail.com> writes:
On Wed, 2024-05-01 at 22:58 +0100, Ben Bacarisse wrote:
wij <wyniijj5@gmail.com> writes:
[...]
<fixed_point_number>::= [-] <wnum> [ . <frac> ] // excluding "-0" case
<wnum>::= 0
<wnum>::= <nzd> { 0 | <nzd> }
<frac>::= { 0 | <nzd> } <nzd>
<nzd> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 // 'digit' varys depending on n-ary
Ex: 78, -12.345, 3.1414159
So what's the point of defining these strings that represent a subset of
the rationals?
<fixed_point_number> is a super set of rationals.
[...]
An extraordinary claim.
Do you agree that 1/3 is a rational number? How is 1/3 represented in
your <fixed_point_number> notation?
I already told you: 1/3= 0.1 (3-ary <fixed_point_number>)
Substitute the n in n-ary with the q in p/q, every p/q is representable
by <fixed_point_number>.
And, the rule of <frac> can generate infinitely long fractions, read it carefully!