Liste des Groupes | Revenir à c theory |
On 2024-05-08 12:57:07 +0000, olcott said:*I can get to that point only after you agree with this point*
On 5/8/2024 3:46 AM, Mikko wrote:No, it does not. The "H" in the template is a fixed "H" that doesOn 2024-05-07 15:40:32 +0000, olcott said:>
>On 5/7/2024 6:18 AM, Richard Damon wrote:>On 5/7/24 3:30 AM, Mikko wrote:>On 2024-05-06 18:28:37 +0000, olcott said:>
>On 5/6/2024 11:19 AM, Mikko wrote:>On 2024-05-05 17:02:25 +0000, olcott said:>
>The x86utm operating system: https://github.com/plolcott/x86utm enables>
one C function to execute another C function in debug step mode.
Simulating Termination analyzer H simulates the x86 machine code of its
input (using libx86emu) in debug step mode until it correctly matches a
correct non-halting behavior pattern proving that its input will never
stop running unless aborted.
>
Can D correctly simulated by H terminate normally?
00 int H(ptr x, ptr x) // ptr is pointer to int function
01 int D(ptr x)
02 {
03 int Halt_Status = H(x, x);
04 if (Halt_Status)
05 HERE: goto HERE;
06 return Halt_Status;
07 }
08
09 int main()
10 {
11 H(D,D);
12 }
>
*Execution Trace*
Line 11: main() invokes H(D,D);
>
*keeps repeating* (unless aborted)
Line 03: simulated D(D) invokes simulated H(D,D) that simulates D(D)
>
*Simulation invariant*
D correctly simulated by H cannot possibly reach past its own line 03.
>
The above execution trace proves that (for every H/D pair of the
infinite set of H/D pairs) each D(D) simulated by the H that this D(D)
calls cannot possibly reach past its own line 03.
When you say "every H/D pair" you should specify which set of pairs
you are talking about. As you don't, your words don't mean anything.
>
Every H/D pair in the universe where D(D) is simulated by the
same H(D,D) that D(D) calls. This involves 1 to ∞ steps of D
and also includes zero to ∞ recursive simulations where H
H simulates itself simulating D(D).
"In the universe" is not a set. In typical set theories like ZFC there
is no universal set.
This template defines an infinite set of finite string H/D pairs where each D(D) that is simulated by H(D,D) also calls this same H(D,D).
No, it does not. D does not know which H simulates it or even whther is
simulated at all. D calls the one whose name is H. The association of D
with the H of the same pair, if desired, must be done outside of D.
>
The template specifies that D(D) is calling the same H(D,D)
that invokes it. All instances conform to the template.
not chage to "main" when
int main(void) {
D(D);
return 0;
}
is executed.
Les messages affichés proviennent d'usenet.