Re: Improved ℙ≠ℕℙ proof

Liste des GroupesRevenir à c theory 
Sujet : Re: Improved ℙ≠ℕℙ proof
De : wyniijj5 (at) *nospam* gmail.com (wij)
Groupes : comp.theory
Date : 05. Jun 2024, 09:33:17
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <22b8a8909a18d0b9e6fbf9285b20f903b1e5ab48.camel@gmail.com>
References : 1 2 3 4
User-Agent : Evolution 3.50.2 (3.50.2-1.fc39)
On Tue, 2024-06-04 at 16:14 +0200, immibis wrote:
On 3/06/24 16:22, wij wrote:
If ℙ=ℕℙ, which means the remaining task can be completed independently in Ptime
without I. In this sitution, solve_remain(q2,I) is equivalent to temp_anp(q2).
But the complexity of computation is W(|q|)=W(|q|-1)+ W(|q|-1)= 2^(|q|-1)*W(1),
a O(2^N) level of complexity contradicting he assumed Ptime. Therefore, ℙ≠ℕℙ.
 
If I understand it correctly, you think that if an algorithm for solving
a problem takes O(2^N) complexity then the problem can't be P-time.
 
But this is not correct. There are slow algorithms for fast problems.
For example, if I know a binary number M, and I want to calculate
whether all binary numbers with the same number of bits are less than or
equal to M, I could do it by looping through all the binary numbers with
the same number of bits, and checking if each one is less or equal. That
would be an O(2^N) algorithm. Or, I could think about the problem for a
bit, and then check whether all the bits in M are 1. That would be an
O(N) algorithm. Since there is an O(N) algorithm, it is a P-time problem
- even though an O(2^N) algorithm exists as well.

The proof was modified in more detail:
...
... See the link (same as above)
...
Prop1: ANP problem can be divided into two size-1-subproblems.
   Proof: By spliting the certificate as follow:
          bool temp_anp(Problem q) {
            if(q.certificate().size()<Thresh) { // Thresh is a small constant
              return solve_thresh_case(q);
            }
            Problem q1,q2;
            split_certificate(q,q1,q2);        // Split the certificate in q
            return temp_anp(q1) || temp_anp(q2); // to form q1,q2
          }

Prop2: ℙ≠ℕℙ
   Proof: The temp_anp(q) can be re-written as follow:
          bool temp_anp(Problem q) {
            if(q.certificate().size()<Thresh) { // Thresh is a small constant
              return solve_thresh_case(q);
            }
            Problem q1,q2;
            split_certificate(q,q1,q2);  // Split the certificate in q to
                                         //   disjoint subproblem q1, q2.
            Info I;                      // I=info. that helps solving q
            if(temp_anp_i(q1,I)==true) { // temp_anp_i(q1,I) solves temp_anp(q1)
                                         // and stores whatever helpful into I
              return true;
            }
            return solv_remain(q2,I);    // Solve temp_anp(q2) with the given I
          }

          For a ℕℙℂ problem q, if ℙ=ℕℙ, then information I is unnecessary for
          solv_remain(q2,I) because it can compute I in Ptime by its own. Thus,
          the complexity of solv_remain(..) is equivalent to the independent
          size-1-subproblem temp_anp(q2) (if not equivalent, the general
          recursive algorithms of solving ℕℙℂ and Prop1 are wrong, which is not
          the fact). Equally, temp_anp_i(q1,I) is then equivalent to the
          size-1-subproblem temp_anp(q1) simply by not providing I. Therefore,
          the complexity of temp_anp(q) is W(|q|)= W(|q|-1)+W(|q|-1)          2^(|q|-1)*W(1), W(1)>=1, a O(2^N) level of complexity contradicting
          the assumed Ptime. Therefore, from ℕℙℂ≠ℙ, we can conclude ℙ≠ℕℙ.
-----------------------------------------------------------------------------

If I understand your question correctly, if solv_remain(q2,I) can be computed
in Ptime ANYWAY, that will lead to say that any problem in ℕℙ can be Ptime
reduced to a dummy-fixed-time problem... that would be another 'humiliating'
proof. The proof above is more 'constructive' in that the method is resuable
(hopefully) to analyse other problems and conquer searching problems.



Date Sujet#  Auteur
30 May 24 * Improved ℙ≠ℕℙ proof11wij
31 May 24 `* Re: Improved ℙ≠ℕℙ proof10wij
31 May 24  +* Re: Improved ℙ≠ℕℙ proof4immibis
1 Jun 24  i`* Re: Improved ℙ≠ℕℙ proof3wij
1 Jun 24  i `* Re: Improved ℙ≠ℕℙ proof2immibis
2 Jun 24  i  `- Re: Improved ℙ≠ℕℙ proof1wij
3 Jun 24  `* Re: Improved ℙ≠ℕℙ proof5wij
3 Jun 24   +* Re: Improved ℙ≠ℕℙ proof2wij
6 Jun 24   i`- Re: Improved ℙ≠ℕℙ proof1wij
4 Jun 24   `* Re: Improved ℙ≠ℕℙ proof2immibis
5 Jun 24    `- Re: Improved ℙ≠ℕℙ proof1wij

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal