Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers

Liste des GroupesRevenir à c theory 
Sujet : Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers
De : noreply (at) *nospam* example.org (joes)
Groupes : comp.theory
Date : 26. Oct 2024, 10:20:38
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <338c1bde7c8462e11372f2c4b52f8daaba086272@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Fri, 25 Oct 2024 18:06:53 -0500 schrieb olcott:
On 10/25/2024 5:17 PM, Richard Damon wrote:
On 10/25/24 5:52 PM, olcott wrote:
On 10/25/2024 10:52 AM, Richard Damon wrote:
On 10/25/24 9:31 AM, olcott wrote:
On 10/25/2024 3:01 AM, Mikko wrote:
On 2024-10-24 14:28:35 +0000, olcott said:
On 10/24/2024 8:51 AM, Mikko wrote:

The power operator can be built from repeated operations of the
multiply operator. Will a terabyte be enough to store the Gödel
numbers?
Likely depends on how big of a system you are making F.
I am proposing actually doing Gödel's actual proof and deriving all of
the digits of the actual Gödel numbers.
Then try it and see.
You do understand that the first step is to fully enumerate all the
axioms of the system, and any proofs used to generate the needed
properties of the mathematics that he uses.
Gödel seems to propose that his numbers are actual integers, are you
saying otherwise?
No, how do you get that?
You should have a look at Russell and Whitehead's work before you
waste the rest of your life.

--
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.

Date Sujet#  Auteur
7 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal