Sujet : Re: Racines multiples
De : jp (at) *nospam* python.invalid (Python)
Groupes : fr.sci.mathsDate : 10. May 2025, 16:16:25
Autres entêtes
Organisation : Nemoweb
Message-ID : <aAhUMe41MC6RG8OxRyM9xT68pek@jntp>
References : 1 2 3 4 5 6 7 8 9 10
User-Agent : Nemo/1.0
Le 10/05/2025 à 17:06, Richard Hachel a écrit :
Le 10/05/2025 à 16:35, "M.V." a écrit :
i = -1 mais i^2 ≠ (-1)^2 ?
On dirait que tu commences à comprendre.
Continue, on obtiendra peut-être quelque chose de toi. Ben oui. i^x=-1 quelque soit x.
(-i)^x= 1 ou -1 selon la parité de l'exposant.
1^x=1
(-1)^x= 1 ou -1 selon la parité de l'exposant.
Avant de critiquer un concept, il faut le comprendre. Je donne une nouvelle interprétation de i. Des tas d'abrutis me répondent avec l'ancienne, en me disant que ça colle pas. MAIS JE LE SAIS QUE CA COLLE PAS, BANDE DE CRETINS!
Sinon, c'est pas une interprétation nouvelle !!!
Le problème n'est pas que "ça ne colle pas" avec 100% de ce qui se passe avec des nombres "réels", l'incohérence est profonde et mortelle dans ton "interprétation".
Quand on "pose" i = -1 (ce que l'on faisait avant d'avoir une définition rigoureuse) la seule chose qui "ne colle pas" c'est x^2 >= 0 pour tout x qu'il suffit de restreindre à "x^2 >=0 pour tout x dans R" qui continue à être vrai dans C (R est un sous-ensemble de C pour lequel TOUTES les opérations dans C continue à fonction à 100% de la même façon qu'avant, c'est le POINT CLEF)
Quand tu "poses" i^x = -1 pour tout x, tu arrives à contredire quelque chose de logiquement bien plus élémentaire sans lequel la notion même d'algèbre (au sens usuel) n'a PLUS AUCUN SENS :
si a = b (peut importe leur nature) alors f(a) = f(b)
Comment n'arrives-tu pas à voir que sans cette implication AUCUNE suite de calculs ne peut être logiquement fondée ? C'est tout bonnement hallucinant.
Quelle belle bande de crétins, les hommes...
Quel sacré crétin, Richard "Hachel" Lengrand qui est, pour autant qu'on le suppose, un homme.
Et non pas le demi-dieu omniscient qu'il croit être.