Re: [Solution détaillée] Pythagore

Liste des GroupesRevenir à fs maths 
Sujet : Re: [Solution détaillée] Pythagore
De : om+news (at) *nospam* miakinen.net (Olivier Miakinen)
Groupes : fr.sci.maths
Date : 23. Jan 2022, 14:00:49
Autres entêtes
Organisation : There's no cabale
Message-ID : <ssjji2$tnl$1@cabale.usenet-fr.net>
References : 1 2 3 4 5 6 7 8
User-Agent : Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0 SeaMonkey/2.49.4
Le 23/01/2022 13:04, "Benoît L." a écrit :
 
Sur Wikipedia :
« Discriminant de l'équation du deuxième degré [ax² + bx + c = 0]
» —  Le discriminant de l'équation précédente est le nombre Δ défini
» par : Δ = b² − 4ac »
 
Bin voilà, on te le donne. On te demande d’apprendre, pas de comprendre.

Ça t'intéresse de comprendre ? Tu as raison, moi aussi.

Alors allons-y :

ax² + bx + c = 0
ax² + bx = − c
x² + (b/a)x = − (c/a)
x² + 2(b/2a)x = − (c/a)
x² + 2(b/2a)x + (b/2a)² = − (c/a) + (b/2a)²
(x + b/2a)² = − (c/a) + (b/2a)²      (car (A+B)² = A²+2AB+B²)
(x + b/2a)² = (b/2a)² − (c/a)
(x + b/2a)² = b²/4a² − c/a
(x + b/2a)² = b²/4a² − 4ac/4a²
(x + b/2a)² = (b² − 4ac)/4a² = Δ/(2a)²   (avec Δ = b² − 4ac)
(x + b/2a)² = (√Δ/2a)²
x + b/2a = ± √Δ/2a
x = − b/2a ± √Δ/2a
x = (− b ± √Δ)/2a

Et voilà !

--
Olivier Miakinen

Date Sujet#  Auteur
14 Jan 22 * Pythagore49Sylvie Jaquet
14 Jan 22 +* Re: Pythagore8Julien Arlandis
15 Jan 22 i+* Re: Pythagore5Olivier Miakinen
15 Jan 22 ii+- Re: Pythagore1Richard Hachel
15 Jan 22 ii+- Re: Pythagore1Julien Arlandis
15 Jan 22 ii+- Re: Pythagore1Julien Arlandis
15 Jan 22 ii`- Re: Pythagore1"Benoît L."
15 Jan 22 i+- Re: Pythagore1Richard Hachel
15 Jan 22 i`- Re: Pythagore1robby
15 Jan 22 +* Re: Pythagore10Olivier Miakinen
15 Jan 22 i`* Re: Pythagore9Olivier Miakinen
15 Jan 22 i `* Re: Pythagore8Olivier Miakinen
15 Jan 22 i  +- Re: Pythagore1Julien Arlandis
15 Jan 22 i  `* Re: Pythagore6Olivier Miakinen
15 Jan 22 i   `* Re: Pythagore5Olivier Miakinen
15 Jan 22 i    +- Re: Pythagore1Richard Hachel
15 Jan 22 i    `* Re: Pythagore3Michel Talon
15 Jan 22 i     `* Re: Pythagore2Olivier Miakinen
15 Jan 22 i      `- Re: Pythagore1Olivier Miakinen
15 Jan 22 +* Re: Pythagore4nobody
17 Jan 22 i`* Re: Pythagore3Olivier Miakinen
17 Jan 22 i `* Re: Pythagore2nobody
17 Jan 22 i  `- Re: Pythagore1Olivier Miakinen
15 Jan 22 +* Re: Pythagore23Olivier Miakinen
15 Jan 22 i+* Re: Pythagore21"Benoît L."
15 Jan 22 ii`* [Solution détaillée] Pythagore20Olivier Miakinen
15 Jan 22 ii +* Re: [Solution détaillée] Pythagore11Olivier Miakinen
16 Jan 22 ii i`* Re: [Solution détaillée] Pythagore10"Benoît L."
23 Jan 22 ii i `* Re: [Solution détaillée] Pythagore9Olivier Miakinen
23 Jan 22 ii i  `* Re: [Solution détaillée] Pythagore8"Benoît L."
23 Jan 22 ii i   +* Re: [Solution détaillée] Pythagore6Olivier Miakinen
23 Jan 22 ii i   i+* Re: [Solution détaillée] Pythagore4Richard Hachel
23 Jan 22 ii i   ii`* Re: [Solution détaillée] Pythagore3Python
23 Jan 22 ii i   ii `* Re: [Solution détaillée] Pythagore2Richard Hachel
23 Jan 22 ii i   ii  `- Re: [Solution détaillée] Pythagore1"Benoît L."
23 Jan 22 ii i   i`- Re: [Solution détaillée] Pythagore1"Benoît L."
23 Jan 22 ii i   `- Re: [Solution détaillée] Pythagore1Richard Hachel
16 Jan 22 ii `* Re: [Solution détaillée] Pythagore8Michel Talon
16 Jan 22 ii  `* Re: [Solution détaillée] Pythagore7Julien Arlandis
16 Jan 22 ii   +* Re: [Solution détaillée] Pythagore3Python
16 Jan 22 ii   i`* Re: calculateur symbolique2robby
16 Jan 22 ii   i `- Re: calculateur symbolique1Michel Talon
16 Jan 22 ii   +* Re: [Solution détaillée] Pythagore2Michel Talon
16 Jan 22 ii   i`- Re: [Solution détaillée] Pythagore1robby
19 Jan 22 ii   `- Re: [Solution détaillée] Pythagore1ast
15 Jan 22 i`- Re: Pythagore1HB
16 Jan 22 `* Re: Pythagore3robby
16 Jan 22  +- Re: Pythagore1robby
16 Jan 22  `- Re: Pythagore1robby

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal