Sujet : Re: De la nature de i.
De : jp (at) *nospam* python.invalid (Python)
Groupes : fr.sci.mathsDate : 14. May 2025, 22:00:29
Autres entêtes
Organisation : Nemoweb
Message-ID : <sXUL3hKGGhrUV3mJnK9tdwr9eZE@jntp>
References : 1
User-Agent : Nemo/1.0
Le 14/05/2025 à 16:33, Richard Hachel a écrit :
Je disais que les mathématiciens, au lieu de donner un étriqué i²=-1 sans vraiment expliquer pourquoi,
Ce n'est pas ce qu'ils font. Ton ignorance, volontaire, n'est pas un argument.
Si i est la classe d'équivalence du polynôme X dans l'anneau quotient R[X]/(X^2+1) il est très simple de voir et de comprendre pourquoi i^2 = -1.
J'ai proposé la nouvelle vision suivante.
Qui est dénuée de sens et contradictoire.
N.B. Attention, je ne contredis pas les lois trigonométrique de Gauss, Argand, et Euler. Je parle d'autre chose. Je parle des nombres imaginaires purs, et pas des nombres "complexes" utiles en électricité.
Dans ce cas utilise des termes propres et des notations propres, au lieu de reprendre une terminologie déjà en place et des notations déjà en place. Ça ne changerait rien à ton propos, toujours contradictoire, mais ça éviterait des confusions.
Ah oui, j'oubliais, les charlatans délirants adorent les confusions.