Sujet : Toute cette folie finit par devenir amusante.
De : rh (at) *nospam* tiscali.fr (Richard Hachel)
Groupes : fr.sci.mathsDate : 29. Jun 2025, 01:02:26
Autres entêtes
Organisation : Nemoweb
Message-ID : <_LDFA2fLPDi7v7I8YrBIArB_WyA@jntp>
User-Agent : Nemo/1.0
Il faut voir le bon côté des choses, ça finit par être drôle de voir tous ces gens s'agiter pour des queues de cerises.
https://www.youtube.com/watch?v=nZl8X5NLgioPour ceux qui suivent, je rappelle que la courbe dessinée est simplement f(x)=x^5 élevé de 1 sur l'ordonnée.
x^5+1 ne franchit l'axe qu'une fois, sur la position (-1,0)
Si l'on cherche d'éventuelles racines "complexes" dont j'ai dit ici que le terme était ridicule et inapproprié, mieux vaut donner à la courbe une rotation de 180° sur $(0,1), et on voit que la nouvelle courbe n'est rien d'autre que son anti-courbe originale. La racine imaginaire apparait alors facilement x"=i
Preuve puisque i^x=-1 alors i^3+1=0. CQFD . Le reste n'a aucun intérêt.
R.H.