Sujet : Re: Théories correctes mais fausses
De : r.hachel (at) *nospam* tiscali.fr (Richard Hachel)
Groupes : fr.sci.physiqueDate : 18. Oct 2023, 14:46:33
Autres entêtes
Organisation : Nemoweb
Message-ID : <jExjP-VF_-qvnMmvUCSYh_-3XK0@jntp>
References : 1 2 3
User-Agent : Nemo/0.999a
Le 18/10/2023 à 15:13, Julien Arlandis a écrit :
Le 18/10/2023 à 15:07, Richard Verret a écrit :
Vous pourriez facilement éviter de faire des interprétations erronées sur cette théorie en l'étudiant.
C'est le problème des êtres humains.
Faire des interprétations erronées de choses non étudiées ou mal étudiées. A noter que je n'utilise pas la lettre t lorsque je donne les transformations de Poincaré-Lorentz. J'utilise la lettre To. Les transformations de Lorentz parlent de la chronotropie des référentiels (To), PAS du temps marqués sur les montres (t), et surtout pas sur les montres O et O' comme l'indique un professeur de relativité dans son livre. Quand les origines O et O' se croisent, on déclenche la CHRONOTROPIE des référentiels, pas les montres O et O' (je parie que si j'interroge 100% des physiciens, 100% me diront que c'est ça que l'on déclenche). On a donc :
x'=(x-Vo.To)/sqrt(1-Vo²/c²)
y'=y
z'=z
To'=(To-x.Vo/c²)/sqrt(1-Vo²/c²)
Attention, To est négatif. On mesure un événement qui s'est déjà produit. Exemple classique. Je suis un observateur terrestre, et j'observe une éruption solaire situé sur une étoile situé à 15 al. Les coordonnées spatiales sont de ma position terrestre dans le ciel (12,9,0). t=0. Au même instant, passe une fusée au dessus de moi, à Vo=0.8c sur l'axe des x. Les transformation de Lorentz (si on suit bien) nous disent que pour elle, t'=0 comme pour moi. Nous voyons au même instant, le même événement, au moment où nous déclenchons les montres. t=t'=0.
Que nous apporte Poincaré?
Il nous dit que pour moi, l'événement a eu lieu avec les coordonnées (12,9,0,-15),
c'est à dire IL Y A 15 ans. Mais il me dit que pour la fusée qui passe au dessus de moi, l'événement a eu lieu à 41 années-lumière, et non plus à 15, et qu'il s'est produit, il y a 41 ans.
Les coordonnées de l'événement devenant pour cette fusée qui me croise (40,9,0,-41).
C'est ça que dit Poincaré. A noter la beauté et la logique des transformations.
Que se passe-t-il si on a les coordonnées pour la fusée, mais pas les miennes?
Notion de transformation inverse. R.H.