Sujet : Re: Remplissage d'un cube avec du bois
De : efji (at) *nospam* efi.efji (efji)
Groupes : fr.sci.mathsDate : 10. Mar 2025, 16:48:05
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vqn1jm$1cgj6$7@dont-email.me>
References : 1 2 3 4 5 6 7 8 9
User-Agent : Mozilla Thunderbird
Le 10/03/2025 à 13:27, "Benoît L." a écrit :
Le lundi 10 mars 2025 à 10:38, Olivier Miakinen d'un élan de joie
s'exprima ainsi :
Le 08/03/2025 16:46, "Benoît L." a écrit :
>
Un exemple réalisable par tout un chacun, d’un âge certain, qui justifie
mes dires :
— Tu prends une boîte de crayons de couleurs ;
— Tu tailles tous les crayons ;
— Tu mets les copeaux dans la boîte.
>
Ça ne déborde pas plus qu’un peu ?
>
Si tu tailles tes crayons dans un taille-crayons circulaire, pour donner
des taillures de crayon arrondies, c'est évident.
>
Mais si tu les tailles avec un canif pour donner des morceaux en forme
d'aiguilles, j'en doute fortement.
Ah bon. Tu prends un bloc de bois de 1m³ tu en fais des aiguilles que tu
verses dans un bocal de 1x1x1 et ça ne va pas déborder ?
Tu prends 1m³ d'eau, tu en fais des glaçons avec ton moule dans le frigo
et tu les balances dans dans le bocal, ça ne va pas dépasser ?
Ca part dans tous les sens votre histoire.
Pour que les maths puissent aider à quoi que ce soit, il faut s'entendre sur un problème clair à résoudre, ce qui est loin d'être le cas. A chaque nouveau message il y a une nouvelle information sortie de nulle part, à tel point que ça en devient presque comique :)
Les glaçons c'est le pompon car je rappelle que le volume d'un glaçon est plus important que le volume de la même masse d'eau :)
Oui, et du temps que tu t'autorises à remettre les pièces l'une après
l'autre au bon endroit pour approcher du but.
C'est quoi le "bon endroit" et "l'une après l'autre" pour des pièces toutes différentes ?
-- F.J.