Re: Three rational triples

Liste des GroupesRevenir à r puzzles 
Sujet : Re: Three rational triples
De : pc+usenet (at) *nospam* asdf.org (Phil Carmody)
Groupes : rec.puzzles
Date : 01. Oct 2024, 18:39:30
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <877carhgdp.fsf@fatphil.org>
References : 1 2 3 4
User-Agent : Gnus/5.13 (Gnus v5.13) Emacs/26.1 (gnu/linux)
"Keith F. Lynch" <kfl@KeithLynch.net> writes:
HenHanna <HenHanna@dev.null> wrote:
Keith F. Lynch wrote:
Since it's been more than a week, and nobody has figured it out:
Each of them has a sum that's equal to its product and is an integer.
>
i think one person said exactly that.
>
Who and when?  I didn't see any such post.
>
Is it easy to find them?
>
No, even though there are infinitely many.  Try and find one I
didn't list.
>
Constraints:  All three numbers must be positive, real, and rational,
but not integers.

They're literally everywhere. Given 2 rational numbers, there's a solution

(Here I've capped numerators and denominators to 50.)

$ echo 'for(n=1,10000,a=(1+random(49))/(2+random(48));if(denominator(a)==1,next);b=1/a+(1+random(50))/(2+random(50));if(denominator(b)==1||numerator(b)>=50,next);x=(a+b)/(a*b-1);if(denominator(x)>1&&numerator(x)<50&&denominator(x)<50,print(a" "b" "x" "a+b+x"="a*b*x)))' | gp -q > crap
$ sort -n crap | uniq
1/2 11/4 26/3 143/12=143/12
1/2 16/5 37/6 148/15=148/15
1/2 19/8 46/3 437/24=437/24
1/2 26/3 11/4 143/12=143/12
1/2 29/7 13/3 377/42=377/42
1/2 8/3 19/2 38/3=38/3
1/3 21/5 34/3 238/15=238/15
1/3 25/7 41/2 1025/42=1025/42
1/3 31/5 49/8 1519/120=1519/120
1/3 36/7 23/3 92/7=92/7
1/4 11/2 46/3 253/12=253/12
2/3 11/2 37/16 407/48=407/48
2/3 11/6 45/4 55/4=55/4
2/3 7/2 25/8 175/24=175/24
2/3 9/4 35/6 35/4=35/4
2/5 7/2 39/4 273/20=273/20
3/2 13/7 47/25 1833/350=1833/350
3/2 17/3 43/45 731/90=731/90
3/2 29/24 10/3 145/24=145/24
3/2 3/2 12/5 27/5=27/5
3/2 4/3 17/6 17/3=17/3
3/2 5/3 19/9 95/18=95/18
3/2 8/3 25/18 50/9=50/9
3/4 19/3 17/9 323/36=323/36
3/4 8/3 41/12 41/6=41/6
3/5 11/3 32/9 352/45=352/45
4/3 12/11 16/3 256/33=256/33
4/3 13/2 47/46 611/69=611/69
4/3 13/4 11/8 143/24=143/24
4/3 17/6 3/2 17/3=17/3
4/3 49/12 39/32 637/96=637/96
4/3 7/4 37/16 259/48=259/48
4/3 7/6 9/2 7=7
4/3 9/4 43/24 43/8=43/8
4/5 7/3 47/13 1316/195=1316/195
5/2 7/5 39/25 273/50=273/50
5/3 8/5 49/25 392/75=392/75
6/5 3/2 27/8 243/40=243/40
6/7 19/12 41/6 779/84=779/84
6/7 9/2 15/8 405/56=405/56
7/2 5/3 31/29 1085/174=1085/174
7/3 9/7 38/21 38/7=38/7
7/9 29/7 31/14 899/126=899/126
8/5 3/2 31/14 186/35=186/35
9/2 5/3 37/39 185/26=185/26
15/7 3/5 48/5 432/35=432/35
20/21 5/2 5/2 125/21=125/21
22/7 10/11 24/11 480/77=480/77
42/11 20/21 38/21 1520/231=1520/231

I'm particularly enamoured with this find:
4/3 7/6 9/2 7=7

Widening the net, I was unable to find any other integer sum/products.
Can anyone else find another one - I suspect actually using some algebra
might make sense, rather than just probing randomly.

Other small denominators are everywhere:

1/12 63/4 152/3 133/2=133/2
1/28 147/4 824/7 309/2=309/2
1/3 9/2 29/3 29/2=29/2
1/33 729/22 24079/3 16119/2=16119/2
1/5 29/5 75/2 87/2=87/2
1/7 49/2 69/7 69/2=69/2

1/15 78/5 1175/3 1222/3=1222/3
1/18 172/9 621/2 989/3=989/3
1/2 16/3 7/2 28/3=28/3
1/2 19/2 8/3 38/3=38/3
1/2 7/2 16/3 28/3=28/3
1/4 16/3 67/4 67/3=67/3
1/4 19/4 80/3 95/3=95/3
1/5 25/3 64/5 64/3=64/3
1/5 64/5 25/3 64/3=64/3
1/6 15/2 92/3 115/3=115/3
1/6 20/3 123/2 205/3=205/3
1/7 55/7 196/3 220/3=220/3
1/78 169/2 13184/13 3296/3=3296/3
1/8 103/8 64/3 103/3=103/3
2/15 25/3 381/5 254/3=254/3
2/7 26/7 196/3 208/3=208/3
3/2 17/6 4/3 17/3=17/3
3/2 28/3 5/6 35/3=35/3
3/2 5/6 28/3 35/3=35/3
4/3 3/2 17/6 17/3=17/3
4/3 39/2 5/6 65/3=65/3
4/3 5/6 39/2 65/3=65/3
5/6 3/2 28/3 35/3=35/3
5/6 4/3 39/2 65/3=65/3




Phil
--
We are no longer hunters and nomads. No longer awed and frightened, as we have
gained some understanding of the world in which we live. As such, we can cast
aside childish remnants from the dawn of our civilization.
-- NotSanguine on SoylentNews, after Eugen Weber in /The Western Tradition/

Date Sujet#  Auteur
18 Sep 24 * Re: Three rational triples5Keith F. Lynch
19 Sep 24 `* Re: Three rational triples4HenHanna
19 Sep 24  `* Re: Three rational triples3Keith F. Lynch
1 Oct 24   `* Re: Three rational triples2Phil Carmody
6 Oct 24    `- Re: Three rational triples1Keith F. Lynch

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal