Sujet : Re: Add the numbers in a 9x9 multiplication Table
De : qnivq.ragjvfgyr (at) *nospam* ogvagrearg.pbz (David Entwistle)
Groupes : rec.puzzlesDate : 10. Jun 2025, 07:49:53
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <1028kih$12mrr$1@dont-email.me>
References : 1 2 3 4 5
User-Agent : Pan/0.149 (Bellevue; 4c157ba git@gitlab.gnome.org:GNOME/pan.git)
On Mon, 9 Jun 2025 16:32:37 -0000 (UTC), Richard Tobin wrote:
sum(x=1..n) sum(y=1..n) [xy]
= sum(x=1..n) [x sum(y=1..n) y]
= [sum(x=1..n) x] [sum(y=1..n) y]
= [sum(x=1..n)]^2
sum(x=1..n) is well known and easily seen geometrically.
Well blow me down with a feather.
SPOILER
POILER
OILER
ILER
LER
ER
R
To calculate the sum of the numbers 1 through n:
1, 2, 3 ... n-2, n-1, n
We can write the series in reverse:
n, n-1, n-2 ... 3, 2, 1
Adding the two rows together each element provides the same sum, (n+1).
so:
2[sum(x=1..n)] = n(n+1)
and
[sum(x=1..n)] = n(n+1)/2
sum(x=1..n) sum(y=1..n) [xy]
= sum(x=1..n) [x sum(y=1..n) y]
= [sum(x=1..n) x] [sum(y=1..n) y]
= [sum(x=1..n)]^2
The value we are looking for, the sum of the elements in a n x n
multiplication table, is given by
[sum(x=1..n)]^2 = [n(n+1)/2]^2
= (n^4 + 2n^3 + n^2)/4
Thanks, that's brill.
-- David Entwistle