Re: Pythagorean Primitives

Liste des GroupesRevenir à r puzzles 
Sujet : Re: Pythagorean Primitives
De : gtaylor (at) *nospam* chiark.greenend.org.uk (Gareth Taylor)
Groupes : rec.puzzles
Date : 26. Jun 2025, 21:08:31
Autres entêtes
Organisation : SGO
Message-ID : <tDz*VO2fA@news.chiark.greenend.org.uk>
References : 1 2 3 4
User-Agent : trn 4.0-test77 (Sep 1, 2010)
In article <sm7r5k1qn6jir93tn8jl4nlo75j5uqiufq@4ax.com>,
Charlie Roberts  <croberts@gmail.com> wrote:

Well, the goose may have finally been cooked (for me, at least).
>
"The number of "primitive" triples for any side of a Pythagorean
triple is 2^(n-1), where n is the number of unique prime factors of
that side length. There may be more imprimitives than this but not
primitives."
>
but no proof (or pointers to a proof) is given.

Hello.  Yesterday, I posted some maths waffle in a reply elsewhere in
this thread.  I mention it partly in case you missed it, but partly in
case it hasn't shown up at all.  (I haven't posted to a newsgroup for
ages and might have got it wrong!)

Gareth

Date Sujet#  Auteur
20 Jun 25 * Pythagorean Primitives9David Entwistle
20 Jun 25 +* Re: Pythagorean Primitives5IlanMayer
20 Jun 25 i`* Re: Pythagorean Primitives4David Entwistle
25 Jun 25 i `* Re: Pythagorean Primitives3Gareth Taylor
27 Jun01:20 i  +- Re: Pythagorean Primitives1Mike Terry
27 Jun08:33 i  `- Re: Pythagorean Primitives1David Entwistle
20 Jun 25 +- Re: Pythagorean Primitives1David Entwistle
21 Jun 25 +- Re: Pythagorean Primitives1David Entwistle
26 Jun21:08 `- Re: Pythagorean Primitives1Gareth Taylor

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal