Re: Pythagorean Primitives

Liste des GroupesRevenir à r puzzles 
Sujet : Re: Pythagorean Primitives
De : qnivq.ragjvfgyr (at) *nospam* ogvagrearg.pbz (David Entwistle)
Groupes : rec.puzzles
Date : 27. Jun 2025, 08:33:55
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <103lhh3$t4h$1@dont-email.me>
References : 1 2 3 4
User-Agent : Pan/0.149 (Bellevue; 4c157ba git@gitlab.gnome.org:GNOME/pan.git)
On 25 Jun 2025 19:05:44 +0100 (BST), Gareth Taylor wrote:

Warning, incoming maths!  But I've tried to make it friendly and
legible.
 
It comes down to factorisations in the "Gaussian integers", which are
numbers of the form a+bi, with a, b integers and i = sqrt(-1).
 
For example, using these we can now factorise 5 = (2+i)(2-i), but we
can't factorise 7 any more than it already is.
 
It can be shown (proof omitted!) that all integer primes which are 1 mod
4 factorise as (a+bi)(a-bi) for some a, b, and moreover that there is
only one such factorisation.  (Well, only one up to moving irrelevant
factors of -1 or +-i around, e.g. writing 5 = (1+2i)(1-2i) instead). The
prime 2 also factorises, as (1+i)(1-i), but that's not going to matter
to us.

Thanks Gareth for the comprehensive and clear explanation.

That's an great insight.



--
David Entwistle

Date Sujet#  Auteur
20 Jun 25 * Pythagorean Primitives9David Entwistle
20 Jun 25 +* Re: Pythagorean Primitives5IlanMayer
20 Jun 25 i`* Re: Pythagorean Primitives4David Entwistle
25 Jun19:05 i `* Re: Pythagorean Primitives3Gareth Taylor
27 Jun01:20 i  +- Re: Pythagorean Primitives1Mike Terry
27 Jun08:33 i  `- Re: Pythagorean Primitives1David Entwistle
20 Jun 25 +- Re: Pythagorean Primitives1David Entwistle
21 Jun 25 +- Re: Pythagorean Primitives1David Entwistle
26 Jun21:08 `- Re: Pythagorean Primitives1Gareth Taylor

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal