Re: Fast Modular Exponentiation with Huge Exponents

Liste des GroupesRevenir à s crypt 
Sujet : Re: Fast Modular Exponentiation with Huge Exponents
De : 3883 (at) *nospam* sugar.bug (SugarBug)
Groupes : sci.crypt
Date : 12. Apr 2024, 22:27:48
Autres entêtes
Organisation : Baggy Jeans Mafia (sybershock.com)
Message-ID : <47132d46cb2d382cdc1dd7cbca86b44d$1@sybershock.com>
References : 1 2 3
User-Agent : 3883.7766
On Fri, 12 Apr 2024 16:18:57 -0500
SugarBug <3883@sugar.bug> wrote:

On Thu, 11 Apr 2024 19:18:45 +0100
Peter Fairbrother <peter@tsto.co.uk> wrote:
 
Montgomery Schorr 
 
Do you mean "Scnorr" as in CP Schnorr Signatures?
 
Do you mean like this:
 
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C4&q=montgomery+exponentiation&btnG=&oq=%22Montgomery%22+expon
 
And this:
 
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C4&q=schnorr+exponentiation

Currently I am looking at Montgomery and Joye ladders and division chains. I hope to find some really exotic ideas to play with. I have been playing with some simple primitives that work with small exponents, but fall apart with large powers.

--
     3883@sugar.bug | sybershock.com | sci.crypt


Date Sujet#  Auteur
11 Apr 24 * Fast Modular Exponentiation with Huge Exponents5SugarBug
11 Apr 24 +* Re: Fast Modular Exponentiation with Huge Exponents3Peter Fairbrother
12 Apr 24 i`* Re: Fast Modular Exponentiation with Huge Exponents2SugarBug
12 Apr 24 i `- Re: Fast Modular Exponentiation with Huge Exponents1SugarBug
16 Apr 24 `- Re: Fast Modular Exponentiation with Huge Exponents1Phil Carmody

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal