Re: The momentum - a cotangent vector?

Liste des GroupesRevenir à sp research 
Sujet : Re: The momentum - a cotangent vector?
De : mikko.levanto (at) *nospam* iki.fi (Mikko)
Groupes : sci.physics.research
Date : 08. Aug 2024, 22:15:43
Autres entêtes
Organisation : -
Message-ID : <v9211l$3s0rj$1@dont-email.me>
References : 1 2
On 2024-08-07 11:37:02 +0000, the moderator said:

I think Stefan is using "tangent vector" and "cotangent vector"
in the sense of differential geometry and tensor calculus.  In
this usage, these phrases describe how a vector (a.k.a a rank-1
tensor) transforms under a change of coordintes: a tangent vector
(a.k.a a "contravariant vector") is a vector which transforms the
same way a coordinate position $x^i$ does, while a cotangent vector
(a.k.a a "covariant vector") is a vector which transforms the same
way a partial derivative operator $\partial / \partial x^i$ does.

Thank you. That makes sense.

--=20
Mikko

Date Sujet#  Auteur
7 Aug 24 * The momentum - a cotangent vector?9Stefan Ram
7 Aug 24 +* Re: The momentum - a cotangent vector?6Mikko
8 Aug 24 i+* Re: The momentum - a cotangent vector?4Stefan Ram
8 Aug 24 ii+- Re: The momentum - a cotangent vector?1Hendrik van Hees
8 Aug 24 ii+- Re: The momentum - a cotangent vector?1Mikko
9 Aug 24 ii`- Re: The momentum - a cotangent vector?1Stefan Ram
8 Aug 24 i`- Re: The momentum - a cotangent vector?1Mikko
9 Aug 24 +- Re: The momentum - a cotangent vector?1Hendrik van Hees
10 Aug 24 `- Re: The momentum - a cotangent vector?1Stefan Ram

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal