Re: The philosophy of computation reformulates existing ideas on a new basis ---

Liste des GroupesRevenir à theory 
Sujet : Re: The philosophy of computation reformulates existing ideas on a new basis ---
De : polcott333 (at) *nospam* gmail.com (olcott)
Groupes : comp.theory
Date : 30. Oct 2024, 13:24:13
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vft8hd$25aio$3@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12
User-Agent : Mozilla Thunderbird
On 10/30/2024 5:07 AM, Mikko wrote:
On 2024-10-29 13:56:19 +0000, olcott said:
 
On 10/29/2024 2:57 AM, Mikko wrote:
On 2024-10-29 00:57:30 +0000, olcott said:
>
On 10/28/2024 6:56 PM, Richard Damon wrote:
On 10/28/24 11:04 AM, olcott wrote:
On 10/28/2024 6:16 AM, Richard Damon wrote:
The machine being used to compute the Halting Function has taken a finite string description, the Halting Function itself always took a Turing Machine,
>
>
That is incorrect. It has always been the finite string Turing Machine
description of a Turing machine is the input to the halt decider.
There are always been a distinction between the abstraction and the
encoding.
>
Nope, read the problem you have quoted in the past.
>
>
Ultimately I trust Linz the most on this:
>
the problem is: given the description of a Turing machine
M and an input w, does M, when started in the initial
configuration qow, perform a computation that eventually halts?
https://www.liarparadox.org/Peter_Linz_HP_317-320.pdf
>
Ĥ.q0 ⟨Ĥ⟩ ⊢* embedded_H ⟨Ĥ⟩ ⟨Ĥ⟩ ⊢* Ĥ.qy ∞
Ĥ.q0 ⟨Ĥ⟩ ⊢* embedded_H ⟨Ĥ⟩ ⟨Ĥ⟩ ⊢* Ĥ.qn
>
Linz also makes sure to ignore that the behavior of ⟨Ĥ⟩ ⟨Ĥ⟩
correctly simulated by embedded_H cannot possibly reach
either ⟨Ĥ.qy⟩ or ⟨Ĥ.qn⟩ because like everyone else he rejects
simulation out of hand:
>
We cannot find the answer by simulating the action of M on w,
say by performing it on a universal Turing machine, because
there is no limit on the length of the computation.
>
That statement does not fully reject simulation but is correct in
the observation that non-halting cannot be determied in finite time
by a complete simulation so someting else is needed instead of or
in addition to a partial simulation. Linz does include simulationg
Turing machines in his proof that no Turing machine is a halt decider.
>
To the best of my knowledge no one besides me ever came up with the
idea of making a simulating halt decider / emulating termination
analyzer.
 Textboods may mention the idea but there is not much to say about it,
only that it does not give a complete solution. Linz' proof covers
all Turing machines. A simulating halt decider that is not a Turing
machine is not interesting because there is no known way to make it.
 
In other words you are saying that there is no such thing as a
UTM. Not a smart thing to say. embedded_H was adapted from a UTM.
When Ĥ is applied to ⟨Ĥ⟩
Ĥ.q0 ⟨Ĥ⟩ ⊢* embedded_H ⟨Ĥ⟩ ⟨Ĥ⟩ ⊢* Ĥ.qy ∞
Ĥ.q0 ⟨Ĥ⟩ ⊢* embedded_H ⟨Ĥ⟩ ⟨Ĥ⟩ ⊢* Ĥ.qn
embedded_H does correctly determine the halt status of the
Linz ⟨Ĥ⟩ ⟨Ĥ⟩ when embedded_H computes the mapping from its
finite string input to the behavior this finite string actually
specifies.
--
Copyright 2024 Olcott "Talent hits a target no one else can hit; Genius
hits a target no one else can see." Arthur Schopenhauer

Date Sujet#  Auteur
1 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal