Liste des Groupes | Revenir à theory |
On 5/14/2024 4:44 AM, Mikko wrote:But if it is not a "final state" of embedded_H, then it is not an answering state. This is the definition of how a Turing Machine gives an answer.On 2024-05-12 15:58:02 +0000, olcott said:⊢* specifies a wildcard set of state transitions that could
>On 5/12/2024 10:21 AM, Mikko wrote:>On 2024-05-12 11:34:17 +0000, Richard Damon said:>
>On 5/12/24 5:19 AM, Mikko wrote:>On 2024-05-11 16:26:30 +0000, olcott said:>
>I am working on providing an academic quality definition of this>
term.
The definition in Wikipedia is good enough.
>
I think he means, he is working on a definition that redefines the field to allow him to claim what he wants.
Here one can claim whatever one wants anysay.
In if one wants to present ones claims on some significant forum then
it is better to stick to usual definitions as much as possible.
>Sort of like his new definition of H as an "unconventional" machine that some how both returns an answer but also keeps on running.>
There are systems where that is possible but unsolvable problems are
unsolvable even in those systems.
>
When Ĥ is applied to ⟨Ĥ⟩
Ĥ.q0 ⟨Ĥ⟩ ⊢* embedded_H ⟨Ĥ⟩ ⟨Ĥ⟩ ⊢* Ĥ.qy ∞
Ĥ.q0 ⟨Ĥ⟩ ⊢* embedded_H ⟨Ĥ⟩ ⟨Ĥ⟩ ⊢* Ĥ.qn
This notation does not work with machines that can, or have parts
that can, return a value without (or before) termination.
>
include a transition to a non-final state embedded_H.qn.
Les messages affichés proviennent d'usenet.