Liste des Groupes | Revenir à theory |
On 5/30/2024 4:11 AM, joes wrote:∃H ∈ Turing_MachinesAm Wed, 29 May 2024 22:48:45 -0500 schrieb olcott:*Formalizing the Linz Proof structure**A deciders compute the mapping*Poetic.
FROM ITS INPUTS
*to it own accept or reject state*
>
*Deciders cannot take*
ACTUAL TURING MACHINES AS INPUTS
>
*Deciders can only take*
FINITE STRINGS AS INPUTS
What is an „actual Turing machine”?
>
∃H ∈ Turing_Machines
∀x ∈ Turing_Machine_Descriptions
∀y ∈ Finite_Strings
such that H(x,y) = Halts(x,y)
Every H is an actual Turing_Machine
Every x is a Turing_Machine_Description
thus not an actual Turing_Machine
Les messages affichés proviennent d'usenet.