Sujet : Re: DDD correctly emulated by HHH is correctly rejected as non-halting.
De : mikko.levanto (at) *nospam* iki.fi (Mikko)
Groupes : comp.theoryDate : 13. Jul 2024, 09:55:08
Autres entêtes
Organisation : -
Message-ID : <v6tbss$3ggjj$1@dont-email.me>
References : 1 2 3 4 5
User-Agent : Unison/2.2
On 2024-07-12 13:28:15 +0000, olcott said:
On 7/12/2024 3:27 AM, Mikko wrote:
On 2024-07-11 14:02:52 +0000, olcott said:
On 7/11/2024 1:22 AM, Mikko wrote:
On 2024-07-10 15:03:46 +0000, olcott said:
typedef void (*ptr)();
int HHH(ptr P);
void DDD()
{
HHH(DDD);
}
int main()
{
HHH(DDD);
}
We stipulate that the only measure of a correct emulation
is the semantics of the x86 programming language. By this
measure when 1 to ∞ steps of DDD are correctly emulated by
each pure function x86 emulator HHH (of the infinite set
of every HHH that can possibly exist) then DDD cannot
possibly reach past its own machine address of 0000216b
and halt.
For every instruction that the C compiler generates the x86 language
specifies an unambiguous meaning, leaving no room for "can".
then DDD cannot possibly reach past its own machine
address of 0000216b and halt.
As I already said, there is not room for "can". That means there is
no room for "cannot", either. The x86 semantics of the unshown code
determines unambigously what happens.
Of an infinite set behavior X exists for at least one element
or behavior X does not exist for at least one element.
Of the infinite set of HHH/DDD pairs zero DDD elements halt.
That is so far from the Common Language that I can't parse.
-- Mikko