Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs

Liste des GroupesRevenir à theory 
Sujet : Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs
De : richard (at) *nospam* damon-family.org (Richard Damon)
Groupes : comp.theory
Date : 02. Nov 2024, 16:44:45
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <1c279a78f678a57aeaf83b355b5576c698417726@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
User-Agent : Mozilla Thunderbird
On 11/2/24 7:09 AM, olcott wrote:
On 11/2/2024 3:37 AM, Mikko wrote:
On 2024-11-01 11:50:24 +0000, olcott said:
>
On 11/1/2024 3:44 AM, Mikko wrote:
On 2024-10-31 12:19:18 +0000, olcott said:
>
On 10/31/2024 5:34 AM, Mikko wrote:
On 2024-10-30 12:16:02 +0000, olcott said:
>
On 10/30/2024 5:02 AM, Mikko wrote:
On 2024-10-27 14:21:25 +0000, olcott said:
>
On 10/27/2024 3:37 AM, Mikko wrote:
On 2024-10-26 13:17:52 +0000, olcott said:
>
Just imagine c functions that have enough memory to compute
sums and products of ASCII strings of digits using the same
method that people do.
>
Why just imagein? That is fairly easy to make. In some other lanugages
(e.g. Python, Javascript) it is alread in the library or as a built-in
feature.
>
>
OK next I want to see the actual Godel numbers and the
arithmetic steps used to derive them.
>
They can be found in any textbook of logic that discusses undecidability.
If you need to ask about details tell us which book you are using.
>
>
Every single digit of the entire natural numbers
not any symbolic name for such a number.
>
Just evaluate the expressions shown in the books.
>
To me they are all nonsense gibberish.
>
The books define everything needed in order to understand the encoding
rules.
>
Encoding nonsense gibberish as a string of digits is trivial.
>
How one
can convert a proof about arithmetic into a
proof about provability seems to be flatly false.
>
You needn't. The proof about provability is given in the books so
you needn't any comversion.
>
>
So you are saying that the Gödel sentence has nothing
to do with
>
BEGIN:(Gödel 1931:39-41)
   ...We are therefore confronted with a proposition which
   asserts its own unprovability.
END:(Gödel 1931:39-41)
>
Nothing is too strong but the connection is not arithmetic.
That "asserts its own unprovability" refers to a non-arithmetic
interpretation of an arithmetic formula.
>
 I want to know 100% concretely exactly what this means,
no hand waving allowed.
The statement:
There is no g that satisfies the relationship PRR(g).
Is not a statement that is a mathematical operation in the basic field of math, but is a statement ABOUT mathematics. It is a statement that due to the nature of mathematics MUST be a truth bearer, as either there exists a g that satisfies the relationship, or the doesn't.
In the meta-system, we can assign all axioms, operations, and possible statements a number (and can reverse and given a number, get back the statement), and then define a PRR that is a theorem proof checker of the statement given by the number it is given, and sees if it actually is a proof of that initial statement.
When we do this, we see that if a number exists that satisfies that PRR, then in the meta-system we can decode that number to the statement that it represents, and because it satisfied the proof checker, that statement *IS* a proof of the statement that no such number exist, and thus shows that it can not have been a number that satisfies the PRR.

 
Making arithmetic say anything about provability
seems like making an angel food cake out of lug nuts,
cannot possible be done.
>
Numbers have features and formulas have features. Therefore it is
possible to compare features of formulas to features of numbers.
>
 This seems to be a type mismatch error. I need to
see every tiny detail of how it is not.
I think it is just beyond your understanding.

 
It might be the case that one number fills 100 books
of 1000 pages each.
>
You fill find out when you evaluate the expressions. If you use Gödel's
original numbering you will need larger numbers than strictly necessary.
If you first encode symbols with a finite set of characters you can
encode everything with finite set of characters.
>
A book a trillion light years deep?
>
The number of digits in a Gödel number can be computed with less effort
than the Gödel number itself. Still easier to compute a rough estimate.
>
So you have no idea how to compute the Gödel numbers.
>
As I aleady told, I have an idea how to encode formulas with smaller
numbers than the numbers Gödel used.
>
 Exactly how many digits is G?
 
G isn't a number, g is.
G is a statement about the non-existance of a number to match the requirments of a particular Primitive Recursive Relationship.
g doesn't exist, as is proven, so doesn't have digits.
So, your question is incorrect.
That is like asking what is the final digit of the square-root of 2 in base 2.
The Godel Numbers allow us to represent ALL statements in the system as a number. (based on the assignements of primes to base statements in the meta-system).

Date Sujet#  Auteur
18 Oct 24 * A state transition diagram proves ...142olcott
18 Oct 24 `* Re: A state transition diagram proves ...141Richard Damon
18 Oct 24  `* Re: A state transition diagram proves ...140olcott
18 Oct 24   `* Re: A state transition diagram proves ...139Richard Damon
18 Oct 24    `* Re: A state transition diagram proves ...138olcott
18 Oct 24     `* Re: A state transition diagram proves ...137Richard Damon
18 Oct 24      `* Re: A state transition diagram proves ... GOOD PROGRESS136olcott
18 Oct 24       +* Re: A state transition diagram proves ... GOOD PROGRESS24joes
18 Oct 24       i`* Re: A state transition diagram proves ... GOOD PROGRESS23olcott
18 Oct 24       i +- Re: A state transition diagram proves ... GOOD PROGRESS -- I only wanted to cross post this key break through once.1olcott
18 Oct 24       i +* Re: A state transition diagram proves ... GOOD PROGRESS14joes
18 Oct 24       i i`* Re: A state transition diagram proves ... GOOD PROGRESS13olcott
18 Oct 24       i i `* Re: A state transition diagram proves ... GOOD PROGRESS12joes
18 Oct 24       i i  `* Re: A state transition diagram proves ... GOOD PROGRESS11olcott
18 Oct 24       i i   `* Re: A state transition diagram proves ... GOOD PROGRESS10Alan Mackenzie
18 Oct 24       i i    `* Re: A state transition diagram proves ... GOOD PROGRESS9olcott
18 Oct 24       i i     `* Re: A state transition diagram proves ... GOOD PROGRESS8joes
18 Oct 24       i i      `* Re: A state transition diagram proves ... GOOD PROGRESS7olcott
18 Oct 24       i i       +- Re: A state transition diagram proves ... GOOD PROGRESS1olcott
19 Oct 24       i i       `* Re: A state transition diagram proves ... GOOD PROGRESS5joes
19 Oct 24       i i        `* Re: A state transition diagram proves ... GOOD PROGRESS4olcott
19 Oct 24       i i         `* Re: A state transition diagram proves ... GOOD PROGRESS3Richard Damon
19 Oct 24       i i          `* Re: A state transition diagram proves ... GOOD PROGRESS2olcott
19 Oct 24       i i           `- Re: A state transition diagram proves ... GOOD PROGRESS1Richard Damon
19 Oct 24       i `* Re: A state transition diagram proves ... GOOD PROGRESS7Richard Damon
19 Oct 24       i  `* Re: A state transition diagram proves ... GOOD PROGRESS6olcott
19 Oct 24       i   `* Re: A state transition diagram proves ... GOOD PROGRESS5Richard Damon
19 Oct 24       i    `* Re: A state transition diagram proves ... GOOD PROGRESS4olcott
19 Oct 24       i     `* Re: A state transition diagram proves ... GOOD PROGRESS3Richard Damon
19 Oct 24       i      `* Re: A state transition diagram proves ... GOOD PROGRESS2olcott
19 Oct 24       i       `- Re: A state transition diagram proves ... GOOD PROGRESS1Richard Damon
19 Oct 24       `* Re: A state transition diagram proves ... GOOD PROGRESS111Richard Damon
19 Oct 24        +- Re: A state transition diagram proves ... GOOD PROGRESS1olcott
19 Oct 24        `* THREE DIFFERENT QUESTIONS109olcott
19 Oct 24         `* Re: THREE DIFFERENT QUESTIONS108Richard Damon
19 Oct 24          `* Re: THREE DIFFERENT QUESTIONS107olcott
19 Oct 24           `* Re: THREE DIFFERENT QUESTIONS106Richard Damon
19 Oct 24            `* Re: THREE DIFFERENT QUESTIONS105olcott
19 Oct 24             `* Re: THREE DIFFERENT QUESTIONS104Richard Damon
20 Oct 24              `* Re: THREE DIFFERENT QUESTIONS103olcott
20 Oct 24               `* Re: THREE DIFFERENT QUESTIONS102Richard Damon
20 Oct 24                `* I have always been correct about emulating termination analyzers --- PROOF101olcott
20 Oct 24                 +* Re: I have always been correct about emulating termination analyzers --- PROOF99Richard Damon
20 Oct 24                 i`* Re: I have always been correct about emulating termination analyzers --- PROOF98olcott
20 Oct 24                 i +* Re: I have always been correct about emulating termination analyzers --- PROOF10Richard Damon
20 Oct 24                 i i+* Re: I have always been correct about emulating termination analyzers --- PROOF2olcott
20 Oct 24                 i ii`- Re: I have always been incorrect about emulating termination analyzers --- PROOF1Richard Damon
20 Oct 24                 i i+* Re: I have always been correct about emulating termination analyzers --- PROOF2olcott
20 Oct 24                 i ii`- Re: I have always been incorrect about emulating termination analyzers --- PROOF1Richard Damon
20 Oct 24                 i i`* Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L5olcott
21 Oct 24                 i i +- Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L1Richard Damon
21 Oct 24                 i i `* Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L3Richard Damon
21 Oct 24                 i i  `* Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L2olcott
21 Oct 24                 i i   `- Re: Deriving X from the finite set of FooBar preserving operations --- membership algorithm for X in L1Richard Damon
21 Oct 24                 i `* Re: I have always been correct about emulating termination analyzers --- PROOF87Mikko
21 Oct 24                 i  `* Re: I have always been correct about emulating termination analyzers --- PROOF86olcott
22 Oct 24                 i   `* Re: I have always been correct about emulating termination analyzers --- PROOF85Mikko
22 Oct 24                 i    `* Re: I have always been correct about emulating termination analyzers --- PROOF84olcott
23 Oct 24                 i     `* Re: I have always been correct about emulating termination analyzers --- PROOF83Mikko
23 Oct 24                 i      `* Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs82olcott
24 Oct 24                 i       +- Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs1Richard Damon
24 Oct 24                 i       `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs80Mikko
24 Oct 24                 i        `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs79olcott
25 Oct 24                 i         +* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs5Richard Damon
25 Oct 24                 i         i`* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs4olcott
25 Oct 24                 i         i `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs3Richard Damon
25 Oct 24                 i         i  `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs2olcott
25 Oct 24                 i         i   `- Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs1Richard Damon
25 Oct 24                 i         `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs73Mikko
25 Oct 24                 i          `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs72olcott
25 Oct 24                 i           +* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs36Richard Damon
25 Oct 24                 i           i`* Gödel's actual proof and deriving all of the digits of the actual Gödel numbers35olcott
26 Oct 24                 i           i `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers34Richard Damon
26 Oct 24                 i           i  `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers33olcott
26 Oct 24                 i           i   +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers30Richard Damon
26 Oct 24                 i           i   i`* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers29olcott
26 Oct 24                 i           i   i +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
27 Oct 24                 i           i   i `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers27Mikko
27 Oct 24                 i           i   i  +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2joes
28 Oct 24                 i           i   i  i`- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Mikko
27 Oct 24                 i           i   i  `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers24olcott
27 Oct 24                 i           i   i   +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
28 Oct 24                 i           i   i   `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers22Mikko
28 Oct 24                 i           i   i    `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers21olcott
29 Oct 24                 i           i   i     +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers5Richard Damon
29 Oct 24                 i           i   i     i`* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers4olcott
29 Oct 24                 i           i   i     i +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2André G. Isaak
29 Oct 24                 i           i   i     i i`- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1olcott
29 Oct 24                 i           i   i     i `- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
29 Oct 24                 i           i   i     `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers15Mikko
29 Oct 24                 i           i   i      `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers14olcott
30 Oct 24                 i           i   i       +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
30 Oct 24                 i           i   i       `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers12Mikko
30 Oct 24                 i           i   i        `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers11olcott
31 Oct 24                 i           i   i         +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
31 Oct 24                 i           i   i         `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers9Mikko
31 Oct 24                 i           i   i          `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers8olcott
31 Oct 24                 i           i   i           +* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers3joes
31 Oct 24                 i           i   i           i`* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2olcott
1 Nov 24                 i           i   i           i `- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
1 Nov 24                 i           i   i           +- Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers1Richard Damon
1 Nov 24                 i           i   i           `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers3Mikko
26 Oct 24                 i           i   `* Re: Gödel's actual proof and deriving all of the digits of the actual Gödel numbers2joes
26 Oct 24                 i           `* Re: Peano Axioms anchored in First Grade Arithmetic on ASCII Digit String pairs35Mikko
20 Oct 24                 `- Re: I have always been correct about emulating termination analyzers --- PROOF1Richard Damon

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal