The mathematical Poincaré-Lorentz transformations

Liste des GroupesRevenir à p relativity 
Sujet : The mathematical Poincaré-Lorentz transformations
De : r.hachel (at) *nospam* liscati.fr.invalid (Richard Hachel)
Groupes : sci.physics.relativity sci.math
Suivi-à : sci.physics.relativity
Date : 23. Sep 2024, 13:51:31
Autres entêtes
Organisation : Nemoweb
Message-ID : <42RUg_TcLuVCEPpCCJpFdI6NTVM@jntp>
User-Agent : Nemo/1.0
Poincaré-Lorentz transformations transpose the present coordinates of a frame of reference R to the homologous coordinates in a frame of reference R'.
These are very simple transformations, both mathematical and physical, which form a group.
To obtain the reciprocal of these transformations, it is enough to change the sign of the speed.
Be careful, I have already pointed out that relativity is very simple mathematically, but that it is full of small traps.
The main trap here is the sign of To and To' which are always negative. The perceived event having always occurred "a certain time in the past in synchronization mode M (Poincaré-Einstein synchronization)".
The reader can, if he wants, judge for himself by considering the following example, and speaking of the position of a star in light years and measured years: Vo=0.8c
<http://nemoweb.net/jntp?42RUg_TcLuVCEPpCCJpFdI6NTVM@jntp/Data.Media:1>
x=12
y=9
z=0
To=-15 (event in M-type synchro)
d=15
t=0 (perception)
sin a= 0.6
cos a = 0.8
We can check, be kind enough to confirm, this will prove that you master the relativistic mathematical transformations, that:
x'=
y'=
z'=
To'=
d'=
t'=
sin a'=
cos a'=
Anyone who is able to answer all this in less than 10 minutes,
has mastered SR correctly.
Anyone who does not know how to do it would do better to open a tobacco bar on a national road.
R.H.

Date Sujet#  Auteur
23 Sep 24 * The mathematical Poincaré-Lorentz transformations21Richard Hachel
23 Sep 24 +* Re: The mathematical Poincaré-Lorentz transformations2Python
23 Sep 24 i`- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
23 Sep 24 +* Re: The mathematical Poincaré-Lorentz transformations17Paul.B.Andersen
23 Sep 24 i`* Re: The mathematical Poincaré-Lorentz transformations16Richard Hachel
24 Sep 24 i `* Re: The mathematical Poincaré-Lorentz transformations15Paul.B.Andersen
24 Sep 24 i  +* Re: The mathematical Poincaré-Lorentz transformations3Maciej Wozniak
24 Sep 24 i  i`* Re: The mathematical Poincaré-Lorentz transformations2Richard Hachel
24 Sep 24 i  i `- Re: The mathematical Poincaré-Lorentz transformations1Maciej Wozniak
24 Sep 24 i  `* Re: The mathematical Poincaré-Lorentz transformations11Richard Hachel
24 Sep 24 i   `* Re: The mathematical Poincaré-Lorentz transformations10Python
24 Sep 24 i    +- Re: The mathematical Poincaré-Lorentz transformations1Python
24 Sep 24 i    `* Re: The mathematical Poincaré-Lorentz transformations8Richard Hachel
24 Sep 24 i     `* Re: The mathematical Poincaré-Lorentz transformations7Python
24 Sep 24 i      `* Re: The mathematical Poincaré-Lorentz transformations6Richard Hachel
24 Sep 24 i       +* Re: The mathematical Poincaré-Lorentz transformations2Python
24 Sep 24 i       i`- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
25 Sep 24 i       `* Re: The mathematical Poincaré-Lorentz transformations3Thomas Heger
25 Sep 24 i        +- Re: The mathematical Poincaré-Lorentz transformations1Maciej Wozniak
25 Sep 24 i        `- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
24 Sep 24 `- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal