Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)

Liste des GroupesRevenir à ci gemini 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.logic
Date : 21. Nov 2024, 12:03:28
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vhn420$jf6v$3@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
User-Agent : Mozilla Thunderbird
On 21.11.2024 11:59, Mikko wrote:
On 2024-11-21 10:21:40 +0000, WM said:
 
On 21.11.2024 10:16, Mikko wrote:
On 2024-11-20 11:42:15 +0000, WM said:
>
The intervals before and after shifting are not different. Only their positions are.
>
The intervals are different. A shifted interval contains a different
set of numbers.
>
Consider this simplified argument. Let every unit interval after a natural number n which is divisible by 10 be coloured black: (10n, 10n+1]. All others are white. Is it possible to shift the black intervals so that the whole real axis becomes black?
 Yes. Shift the interval (10n, 10n+1) to (n/2, n/2+1).
For every finite (0, n] the relative covering remains f(n) = 1/10, independent of shifting. The constant sequence has limit 1/10.
Regards, WM
 

Date Sujet#  Auteur
22 Dec 24 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal