Re: KISS 64-bit pseudo-random number generator

Liste des GroupesRevenir à cl forth 
Sujet : Re: KISS 64-bit pseudo-random number generator
De : krishna.myneni (at) *nospam* ccreweb.org (Krishna Myneni)
Groupes : comp.lang.forth
Date : 26. Sep 2024, 00:15:31
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vd25ij$3s0rd$1@dont-email.me>
References : 1 2 3 4 5 6
User-Agent : Mozilla Thunderbird
On 9/19/24 06:45, Krishna Myneni wrote:
On 9/19/24 03:57, albert@spenarnc.xs4all.nl wrote:
In article <vcgok8$gol7$1@dont-email.me>,
Krishna Myneni  <krishna.myneni@ccreweb.org> wrote:
<SNIP>
Moments of speed
  N       <v> (m/s)    <v^2> (m/s)^2    <v^3> (m/s)^3
10^2     1181.0956     1656472.7       2604709063.
10^3     1293.3130     1952149.7       3300955817.
10^4     1259.3279     1862988.3       3108515117.
10^5     1260.5577     1872157.8       3147664636.
10^6     1259.4425     1868918.9       3139487337.
10^7     1259.6136     1869145.0       3139092438.
>
I think for a Monte Carlo simulation at least three tests
must be done with different seeds.
 Good point. For a meaningful comparison of errors between PRNGs at a specific N, the statistical variation of the <v^n> need to be measured for different seed values.
 I can add some code to measure this sigma at each N, with 32 seeds uniformly spaced between 0 and UMAX.
 
I've calculated the statistical variation in the moments for each set of N, using 16 different seeds (spaced apart over the interval for UMAX). The standard dev. for the 16 <v^i>, computed for N trials is comparable to the relative error between the moment and its theoretical value. Thus, the relative errors are indeed a meaningful comparison between the two prngs tested here, and I think this implies that for N > 10^5 the LCG PRNG  (RANDOM) gives more accurate answers than the KISS 64 bit PRNG (RAN-KISS), for this problem. The LCG PRNG is faster than the KISS 64-bit PRNG.
minforth stated earlier that he would prefer to use diehard tests to decide between which of these two PRNGs to use for computing these results from random trials. It will be interesting to see if diehard tests are consistent with what I find from actually using the PRNGs and comparing the results to the expected results (for large N and ideal PRNG).
--
Krishna

Date Sujet#  Auteur
9 Sep 24 * KISS 64-bit pseudo-random number generator22Krishna Myneni
9 Sep 24 `* Re: KISS 64-bit pseudo-random number generator21Lars Brinkhoff
9 Sep 24  +* Re: KISS 64-bit pseudo-random number generator19mhx
9 Sep 24  i`* Re: KISS 64-bit pseudo-random number generator18Anton Ertl
9 Sep 24  i +- Re: KISS 64-bit pseudo-random number generator1mhx
9 Sep 24  i +* Re: KISS 64-bit pseudo-random number generator3albert
9 Sep 24  i i`* Re: KISS 64-bit pseudo-random number generator2Anton Ertl
10 Sep 24  i i `- Re: KISS 64-bit pseudo-random number generator1albert
11 Sep 24  i `* Re: KISS 64-bit pseudo-random number generator13Krishna Myneni
13 Sep 24  i  `* Re: KISS 64-bit pseudo-random number generator12Krishna Myneni
13 Sep 24  i   +* Re: KISS 64-bit pseudo-random number generator4Paul Rubin
13 Sep 24  i   i+* Re: KISS 64-bit pseudo-random number generator2mhx
13 Sep 24  i   ii`- Re: KISS 64-bit pseudo-random number generator1Paul Rubin
13 Sep 24  i   i`- Re: KISS 64-bit pseudo-random number generator1minforth
19 Sep 24  i   `* Re: KISS 64-bit pseudo-random number generator7Krishna Myneni
19 Sep 24  i    `* Re: KISS 64-bit pseudo-random number generator6mhx
19 Sep 24  i     +- Re: KISS 64-bit pseudo-random number generator1minforth
19 Sep 24  i     `* Re: KISS 64-bit pseudo-random number generator4Krishna Myneni
19 Sep 24  i      `* Re: KISS 64-bit pseudo-random number generator3Krishna Myneni
26 Sep 24  i       `* Re: KISS 64-bit pseudo-random number generator2Krishna Myneni
26 Sep 24  i        `- Re: KISS 64-bit pseudo-random number generator1Krishna Myneni
10 Sep 24  `- Re: KISS 64-bit pseudo-random number generator1Krishna Myneni

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal