Sujet : Re: Ben thinks the professor Sipser is wrong
De : richard (at) *nospam* damon-family.org (Richard Damon)
Groupes : comp.theory sci.logicDate : 04. Jul 2024, 23:21:14
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <990598b3a90c559f7125530edef9c5a0ef2c7102@i2pn2.org>
References : 1 2 3 4 5
User-Agent : Mozilla Thunderbird
On 7/4/24 2:32 PM, olcott wrote:
On 7/4/2024 1:17 PM, Richard Damon wrote:
On 7/4/24 2:04 PM, olcott wrote:
<MIT Professor Sipser agreed to ONLY these verbatim words 10/13/2022>
If simulating halt decider H correctly simulates its input D
until H correctly determines that its simulated D would never
stop running unless aborted then
>
H can abort its simulation of D and correctly report that D
specifies a non-halting sequence of configurations.
</MIT Professor Sipser agreed to ONLY these verbatim words 10/13/2022>
>
On 10/14/2022 7:44 PM, Ben Bacarisse wrote:
> I don't think that is the shell game. PO really /has/ an H (it's
> trivial to do for this one case) that correctly determines that P(P)
> *would* never stop running *unless* aborted.
...
> But H determines (correctly) that D would not halt if it were not
> halted. That much is a truism.
>
Ben clearly agrees that the above criteria have been met,
yet feels that professor Sipser was tricked into agreeing
that this means that:
H can abort its simulation of D and correctly report that D
specifies a non-halting sequence of configurations.
>
I spent two years deriving those words that Professor Sipser
agreed with. It seems to me that every software engineer would
agree that the second part is logically entailed by the first part.
>
>
You mean you WASTED two years and set a trap for your self that you fell into.
>
The problem is that Ben is adopting your definitions that professor Sipser is not using.
>
Ben agrees that my criteria have been met according to their
exact words. If you want to lie about that I won't talk to
you again.
Which meant different things, so not the same.
The biggest problem is your H/P interlocking program pair is something outside the normal scope of Computation theory.
The way you have built your Deicder/Decider combination isn't actualy within the definition of normal Computaiton Theory, as that would have Decider as a totally independent program from the program it is deciding on.
Your H and D aren't that sort of thing because they are interwined into a single memory space, and even share code.
This makes some things possible to do about the pair that can not be done if they were independent programs, like H being able to detect that D calls itself (but not copies of itself, which is why you don't allow those copies, as that breasks your lie).
Another of the big effect of thins, is that the way you defined it, D actually does have access to the decider that is going to decide it (if we follow your rule and name the decider H). This can turn what used to be an independent fully defined program P into a dependent program template. Undet THAT condition, Ben agreed that yoUr H could conclude that no version of H could simulate the version of D that uses it, to its final state. Since P is a template, and not a program, it doesn't have the normal Objective definition of behavior, and thus your subjective one might need to be used, even with its problems.
When you asked Professor Sipser, The H will be a SPECIFIC decider, and the D will be a specific input that doesn't change, and thus DOES have an objective behavior (that of directly running it, or completely simulating it) and only if H can determine that this OBJECTIVE definition is met, can it abort. Of course, due the relationship in the construction of D, the H that it was built from can NEVER make that correct determination, as if it does, then D will halt and thus H could not have made the determination.
The fact that you don't understand this just shows how little you understand the theory, or it seems, programming in general.