Sujet : Re: How many different unit fractions are lessorequal than all unit fractions?
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.mathDate : 09. Sep 2024, 11:19:56
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vbmi4b$2ce0a$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 08.09.2024 22:34, Python wrote:
Le 08/09/2024 à 21:28, Crank Mückenheim, aka WM a écrit :
On 07.09.2024 16:05, Python wrote:
Le 07/09/2024 à 15:03, WM a écrit :
>
Stop that nonsense. ℵo unit fractions cannot fit into every interval (0, x).
>
Of course they can.
>
Select any gap between one of the first ℵo unit fractions and its neighbour. Call its size x.
x = 1/k - 1/(k+1) = 1/[k*(k+1)] > 0
Then ℵo unit fractions cannot fit into the interval (0, x), independent of the actual size.
It can and it does
Nonsense. ℵo unit fractions cannot fit into one of the ℵo intervals between two of them.
Regards, WM