Re: How many different unit fractions are lessorequal than all unit fractions?

Liste des GroupesRevenir à s lang 
Sujet : Re: How many different unit fractions are lessorequal than all unit fractions?
De : python (at) *nospam* invalid.org (Python)
Groupes : sci.math
Date : 09. Sep 2024, 15:32:11
Autres entêtes
Organisation : CCCP
Message-ID : <vbn0tb$2d8fc$6@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
User-Agent : Mozilla Thunderbird
Le 09/09/2024 à 12:19, Crank Mückenheim, aka WM a écrit :
On 08.09.2024 22:34, Python wrote:
Le 08/09/2024 à 21:28, Crank Mückenheim, aka WM a écrit :
On 07.09.2024 16:05, Python wrote:
Le 07/09/2024 à 15:03, WM a écrit :
>
Stop that nonsense. ℵo unit fractions cannot fit into every interval (0, x).
>
Of course they can.
>
Select any gap between one of the first ℵo unit fractions and its neighbour. Call its size x.
>
x = 1/k - 1/(k+1) = 1/[k*(k+1)] > 0
>
Then ℵo unit fractions cannot fit into the interval (0, x), independent of the actual size.
>
It can and it does
 Nonsense. ℵo unit fractions cannot fit into one of the ℵo intervals between two of them.
(O, x) is NOT an interval between two unit fractions. It has, anyway,
the same length that another interval that is between two neighboring
unit fractions.
Ask one your students^H^H^H^H^H^H^H^H^H victims. They know better
than you.

Date Sujet#  Auteur
22 Dec 24 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal