Sujet : Re: How many different unit fractions are lessorequal than all unit fractions?
De : python (at) *nospam* invalid.org (Python)
Groupes : sci.mathDate : 09. Sep 2024, 16:27:55
Autres entêtes
Organisation : CCCP
Message-ID : <vbn45r$2d8fc$10@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
User-Agent : Mozilla Thunderbird
Le 09/09/2024 à 17:15, Crank Mückenheim, aka WM a écrit :
On 09.09.2024 16:32, Python wrote:
Le 09/09/2024 à 12:19, Crank Mückenheim, aka WM a écrit :
ℵo unit fractions cannot fit into one of the ℵo intervals between two of them.
>
(O, x) is NOT an interval between two unit fractions.
1/n - 1/(n+1) = x is an interval between two unit fraction.
No. It is a number.
This interval is shifted to the origin, yielding the interval (0, x). It does not contain ℵo unit fractions. It does not contain 1/n.
1/n is not in (0, x). Sure. So what? Nevertheless there are Aleph_0 unit
fractions in (0, x). No need for 1/n to be there, there far enough other
fractions.
[snip more nonsense]