Re: A paradox about Cantor's set theory

Liste des GroupesRevenir à s logic 
Sujet : Re: A paradox about Cantor's set theory
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.logic
Date : 12. Mar 2024, 10:42:38
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <usp4hu$6i2f$2@dont-email.me>
References : 1 2 3 4
User-Agent : Mozilla Thunderbird
On 10.03.2024 18:38, Mike Terry wrote:

 The quote is about comparing the sizes of sets, right?  So we have two sets:
    S1 = {1, 2, 3, 4, 5, ...}
   S2 = {2, 4, 6, 8, 10, ...}
 When Cantor/set theory says they are the same size, that is saying that there is a 1-1 correspondence [one-to-one correspondence] between the elements of the set.
And that is a lie as most easily is proved by disproving the correspondence between natural numbers n/1 and positive fractions:
XOOO...
XOOO...
XOOO...
XOOO...
...
Lossless swaps are lossless.
Regards, WM

Date Sujet#  Auteur
9 Mar 24 * A paradox about Cantor's set theory9wij
10 Mar 24 +* Re: A paradox about Cantor's set theory6wij
10 Mar 24 i`* Re: A paradox about Cantor's set theory5Mike Terry
11 Mar 24 i +* Re: A paradox about Cantor's set theory3wij
11 Mar 24 i i`* Re: A paradox about Cantor's set theory2wij
11 Mar 24 i i `- Re: A paradox about Cantor's set theory1wij
12 Mar 24 i `- Re: A paradox about Cantor's set theory1WM
10 Mar 24 `* Re: A paradox about Cantor's set theory2WM
10 Mar 24  `- Re: A paradox about Cantor's set theory1Mikko

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal