Liste des Groupes | Revenir à s logic |
On 8/16/24 6:16 PM, olcott wrote:I think at a higher level of abstraction.On 8/16/2024 5:03 PM, Richard Damon wrote:but they couldn't just "add" it to set theory, they needed to define the full set.On 8/16/24 5:35 PM, olcott wrote:>On 8/16/2024 4:05 PM, Richard Damon wrote:On 8/16/24 4:39 PM, olcott wrote:On 8/16/2024 2:42 PM, Richard Damon wrote:On 8/16/24 2:11 PM, olcott wrote:On 8/16/2024 11:32 AM, Richard Damon wrote:On 8/16/24 7:02 AM, olcott wrote:>>>>>>>>>
*This abolishes the notion of undecidability*
As with all math and logic we have expressions of language
that are true on the basis of their meaning expressed
in this same language. Unless expression x has a connection
(through a sequence of true preserving operations) in system
F to its semantic meanings expressed in language L of F
x is simply untrue in F.
But you clearly don't understand the meaning of "undecidability"
Not at all. I am doing the same sort thing that ZFC
did to conquer Russell's Paradox.
>
>
If you want to do that, you need to start at the basics are totally reformulate logic.
>
ZFC didn't need to do that. All they had to do is
redefine the notion of a set so that it was no longer
incoherent.
>
I guess you haven't read the papers of Zermelo and Fraenkel. They created a new definition of what a set was, and then showed what that implies, since by changing the definitions, all the old work of set theory has to be thrown out, and then we see what can be established.
>
None of this is changing any more rules. All
of these are the effects of the change of the
definition of a set.
>
No, they defined not only what WAS a set, but what you could do as basic operations ON a set.
>
Axiom of extensibility: the definition of sets being equal, that ZFC is built on first-order logic.
>>This one is the key that conquered Russell's Paradox.
Axion of regularity/Foundation: This is the rule that a set can not be a member of itself, and that we can count the members of a set.
>
If anything else changed it changed on the basis of this change
or was not required to defeat RP.
I think you problem is you just don't understand how formal logic works.
Les messages affichés proviennent d'usenet.