Liste des Groupes | Revenir à s logic |
On 2024-08-28 12:14:47 +0000, olcott said:A set containing itself has always been incoherent in its
On 8/28/2024 2:45 AM, Mikko wrote:There is no basis to say that ZF is more or less correct than ZFC.On 2024-08-24 03:26:39 +0000, olcott said:>
>On 8/23/2024 3:34 AM, Mikko wrote:>On 2024-08-22 13:23:39 +0000, olcott said:>
>On 8/22/2024 7:06 AM, Mikko wrote:>On 2024-08-21 12:47:37 +0000, olcott said:>
>>>
Formal systems kind of sort of has some vague idea of what True
means. Tarski "proved" that there is no True(L,x) that can be
consistently defined.
https://en.wikipedia.org/wiki/ Tarski%27s_undefinability_theorem#General_form
>
*The defined predicate True(L,x) fixed that*
Unless expression x has a connection (through a sequence
of true preserving operations) in system F to its semantic
meanings expressed in language L of F then x is simply
untrue in F.
>
Whenever there is no sequence of truth preserving from
x or ~x to its meaning in L of F then x has no truth-maker
in F and x not a truth-bearer in F. We never get to x is
undecidable in F.
Tarski proved that True is undefineable in certain formal systems.
Your definition is not expressible in F, at least not as a definition.
>
Like ZFC redefined the foundation of all sets I redefine
the foundation of all formal systems.
You cannot redefine the foundation of all formal systems. Every formal
system has the foundation it has and that cannot be changed. Formal
systems are eternal and immutable.
>
Then According to your reasoning ZFC is wrong because
it is not allowed to redefine the foundation of set
theory.
It did not redefine anything. It is just another theory. It is called
a set theory because its terms have many similarities to Cnator's sets.
It <is> the correct set theory. Naive set theory
is tossed out on its ass for being WRONG.
They are just different theories. While the naive set theory is--
inconsisen, Cantor's original informal theory is not.
For many purposes sets with urelements are useful. Stratified sets
are also useful for many purposes. Sometimes the notion of classes
(that are not sets and not members of sets or classes but have
sets as members) is used and useful.
Les messages affichés proviennent d'usenet.