Sujet : Re: How to prove this theorem with intuitionistic natural deduction?
De : janburse (at) *nospam* fastmail.fm (Mild Shock)
Groupes : sci.logicDate : 18. Nov 2024, 23:22:11
Autres entêtes
Message-ID : <vhgemi$ca9e$1@solani.org>
References : 1
User-Agent : Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.19
0: P -> (Q -> R) (Premisse)
1: P /\ Q (Assumption)
2: P (/\E,1)
3: Q -> R (->E,0,2)
4: Q (/\E,1)
5: R (->E,3,4)
6: P /\ Q -> R (Discharge,1)
Julio Di Egidio schrieb:
Dear logicians,
How to prove the following theorem with natural deduction in intuitionistic propositional logic (namely, no classical inference rules)?
`(P -> Q -> R) |- (P /\ Q -> R)`
Thanks for any help.
-Julio