I am busy with other stuff (Was: can λ-prolog do it?)

Liste des GroupesRevenir à s logic 
Sujet : I am busy with other stuff (Was: can λ-prolog do it?)
De : janburse (at) *nospam* fastmail.fm (Mild Shock)
Groupes : sci.logic
Date : 01. Dec 2024, 15:32:43
Autres entêtes
Message-ID : <vihs2a$lt4v$2@solani.org>
References : 1 2 3 4 5 6 7 8 9
User-Agent : Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.19
I am busy with other stuff. I have
decided to postpone logic for a while.
So although it was very temping to download
you software, and then replace these line:
notation(dnt(X), ~X->(~(~X)))
solve_t__sel(neg, C=>X) :-
    solve(C=>dnt(X)).
https://gist.github.com/jp-diegidio/b6a7a071f9f81a469c493c4afcc5cb11
By these line:
notation(gliv(X), (~(~X)))
solve_t__sel(neg, C=>X) :-
    solve(C=>gliv(X)).
I am afraid I have no time for that. You
could do it by yourself. Or what
until somebody else does it. What will be
the results?
Julio Di Egidio schrieb:
On 28/11/2024 00:55, Mild Shock wrote:
This is Peirce law:
>
((p->q)->p)->p
Peirce law is not provable in minimal logic.
>
But I guess this is not Glivenko:
notation(dnt(X), ~X->(~(~X)))
>
https://en.wikipedia.org/wiki/Double-negation_translation#Propositional_logic >
>
Glivenko would be simply:
notation(gliv(X), (~(~X)))
>
 We have gone over that already.  Either you have memory problems or you are purposely flooding the channel at this point.
 -Julio
 

Date Sujet#  Auteur
18 Nov 24 * How to prove this theorem with intuitionistic natural deduction?34Julio Di Egidio
18 Nov 24 +* Re: How to prove this theorem with intuitionistic natural deduction?26Mild Shock
18 Nov 24 i`* Re: How to prove this theorem with intuitionistic natural deduction?25Julio Di Egidio
19 Nov 24 i `* can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)24Mild Shock
19 Nov 24 i  `* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)23Julio Di Egidio
19 Nov 24 i   `* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)22Mild Shock
22 Nov 24 i    `* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)21Julio Di Egidio
22 Nov 24 i     +* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)5Julio Di Egidio
27 Nov 24 i     i`* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)4Ross Finlayson
27 Nov 24 i     i `* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)3Julio Di Egidio
27 Nov 24 i     i  `* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)2Ross Finlayson
27 Nov 24 i     i   `- Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)1Julio Di Egidio
28 Nov 24 i     `* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)15Mild Shock
28 Nov 24 i      +* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)2Mild Shock
28 Nov 24 i      i`- Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)1Mild Shock
28 Nov 24 i      +* Negative translation for propositional linear (or affine) logic?10Julio Di Egidio
28 Nov 24 i      i+- Re: Negative translation for propositional linear (or affine) logic?1Julio Di Egidio
28 Nov 24 i      i`* Re: Negative translation for propositional linear (or affine) logic?8Mild Shock
28 Nov 24 i      i `* Re: Negative translation for propositional linear (or affine) logic?7Mild Shock
28 Nov 24 i      i  `* Re: Negative translation for propositional linear (or affine) logic?6Julio Di Egidio
28 Nov 24 i      i   `* Re: Negative translation for propositional linear (or affine) logic?5Mild Shock
28 Nov 24 i      i    `* Re: Negative translation for propositional linear (or affine) logic?4Mild Shock
1 Dec 24 i      i     `* Re: Negative translation for propositional linear (or affine) logic?3Julio Di Egidio
1 Dec 24 i      i      `* Re: Negative translation for propositional linear (or affine) logic?2Mild Shock
1 Dec 24 i      i       `- Re: Negative translation for propositional linear (or affine) logic?1Julio Di Egidio
1 Dec 24 i      `* Re: can λ-prolog do it? (Was: How to prove this theorem with intuitionistic natural deduction?)2Julio Di Egidio
1 Dec 24 i       `- I am busy with other stuff (Was: can λ-prolog do it?)1Mild Shock
1 Dec 24 `* Andrej Bauer is a red flag (Was: How to prove this theorem with intuitionistic natural deduction?)7Mild Shock
1 Dec 24  +- Re: Andrej Bauer is a red flag (Was: How to prove this theorem with intuitionistic natural deduction?)1Mild Shock
1 Dec 24  `* Re: Andrej Bauer is a red flag (Was: How to prove this theorem with intuitionistic natural deduction?)5Julio Di Egidio
1 Dec 24   `* Re: Andrej Bauer is a red flag (Was: How to prove this theorem with intuitionistic natural deduction?)4Mild Shock
1 Dec 24    `* Re: Andrej Bauer is a red flag (Was: How to prove this theorem with intuitionistic natural deduction?)3Mild Shock
1 Dec 24     `* Re: Andrej Bauer is a red flag (Was: How to prove this theorem with intuitionistic natural deduction?)2Mild Shock
1 Dec 24      `- Re: Andrej Bauer is a red flag (Was: How to prove this theorem with intuitionistic natural deduction?)1Mild Shock

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal