Sujet : An Affine Logic Example: Łukasiewicz Logic De : janburse (at) *nospam* fastmail.fm (Mild Shock) Groupes :sci.logic Date : 21. Dec 2024, 23:20:40 Autres entêtes Message-ID :<vk7evo$1jjc4$1@solani.org> User-Agent : Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:91.0) Gecko/20100101 Firefox/91.0 SeaMonkey/2.53.19
Hi, An example of an affine Logic, is this 3-valued Logic with the following implication truth table: F U T F T T T U U T T T F U T It satisfies modus ponens: /* Implication Elimination */ ?- tauto((X & (X->Y) => Y)). true. It satisfies the types of combinators BCK: /* K Combinator */ ?- tauto((X -> Y -> X)). true. /* B Combinator */ ?- tauto(((Y -> Z) -> ((X -> Y) -> (X -> Z)))). true. /* C Combinator */ ?- tauto(((X -> (Y -> Z)) -> (Y -> (X -> Z)))). true. And surprise surprise, it doesn't satisfy contraction, the formula that Julio doubted that it is unprovable: ?- tauto(((X -> (X -> Y)) -> (X -> Y))). false. Bye