Liste des Groupes | Revenir à s logic |
On 30.05.2025 02:05, Ben Bacarisse wrote:WM <wolfgang.mueckenheim@tha.de> writes:>Ah, so you can't do what you suggested and talk to the student, after>
the exam, to try to persuade them that you are right! That did sound a
bit crazy.
Do you never have oral exams in England?
>In the exam there are questions like these:From this, it is not obvious that you want students to say anything I'd
>
- Beschreiben Sie, was man unter der Abzählbarkeit aller positiven Brüche
versteht und erörtern Sie ein Gegenargument.
- Beschreiben Sie, was man unter der Überabzählbarkeit der reellen Zahlen
versteht, und erörtern Sie ein Gegenargument.
- Beschreiben Sie das Spiel "Wir erobern den Binären Baum" und die damit
verknüpfte Aussage.
- Sehen Sie eine Parallele zwischen MacDuck und der Nummerierung aller
Brüche? Wenn ja, welche?
- Was halten Sie vom wissenschaftlichen Wert der Mengenlehre unter
Berücksichtigung von Banach-Tarski-Paradoxon und Verteilung der Brüche in
(0, 1) und (1, oo).
consider to be wrong in an exam. So maybe someone could indeed get full
marks without having to deny mathematics.
Correct mathematics should not be denied.
Are there any claims in your>
lectures that someone at the university down the road would object to?
Of course.>Try to answer. Then I will give you marks.I'll try a couple of questions...
- Beschreiben Sie, was man unter der Abzählbarkeit aller positiven BrücheThe positive fractions are said to be countable because the function
versteht und erörtern Sie ein Gegenargument.
b(0) = 1
b(n+1) = s(b(n))
where s(q) = 1 / (2*floor(q) - q + 1)
is a bijection between the natural numbers and the positive fractions
according to the definition in Prof. Mückenheim's textbook.
I am not aware of a valid counter argument since this is simply a
definition of what the term "countable" means.
It has been shown to the student by many arguments that the bijection
fails.
Without giving one of these arguments (if desired also showing that and why
it fails) you would get only half of the full score.
If a student had ever disproved my proofs he would have got additionalDo you not have to write marking schemes for your exams? And if in
fact you do, what do yours say about alternative answers?
points.
Les messages affichés proviennent d'usenet.