Re: Simple enough for every reader?

Liste des GroupesRevenir à s logic 
Sujet : Re: Simple enough for every reader?
De : mikko.levanto (at) *nospam* iki.fi (Mikko)
Groupes : sci.logic
Date : 05. Jun 2025, 08:32:54
Autres entêtes
Organisation : -
Message-ID : <101rh76$1djtf$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
User-Agent : Unison/2.2
On 2025-06-04 17:32:28 +0000, WM said:

On 04.06.2025 08:43, Mikko wrote:
On 2025-06-03 13:17:57 +0000, WM said:
 
I had only to show that in Cantor's set theory proofs by arithmetic induction are possible.
 Which you didn't show.
 Cantor shows it.
 
That confirms my proof:
ℵo - 1 = ℵo
P[1]: {1} has infinitely many (ℵo) successors.
P[n]: {1, 2, 3, ..., n} has infinitely many (ℵo) successors.
P[n+1]: {1, 2, 3, ..., n, n+1} has infinitely many (ℵo) successors.
 So far good. But no P[n] -> P[n+1] and no induction.
 ℵo - 1 = ℵo.
No -> there.

As there is no complete
sentence in the quoted text fragemnt it is hard to say what exacly he was
going to do but I can't imagine any completion of the sentence that does
not promise to use complete induction for something.
 
Here Cantor shows a shorter application of induction:
 Ich schicke folgenden allgemeinen, höchst einleuchtenden Hilfssatz voraus: sind irgend zwei Mengen M und N äquivalent, so können sie (im allgemeinen auf viele Weisen) so in gegenseitig eindeutige und vollständige Zuordnung gebracht werden, daß bei dieser Zurodnung einem beliebig vorgegebenen Elemente m von M ein ebenso beliebig gewähltes Element n von N entspricht.
    Und nun wird zum Beweise des in Rede stehenden Satzes ein vollständiges Induktionsverfahren eingeleitet.
    Man setze eine Menge M voraus, welche keinem ihrer Bestandteile äquivalent ist; ich will zeigen, daß alsdann auch die aus M durch Hinzufügung eines neuen Elementes l hervorgehende Menge M + l dieselbe Eigenschaft hat,  mit keinem ihrer Bestandteile äquivalent zu sein. Sei N irgendein Bestandteil von M + l, so kann er zwei Fälle darbieten. 1) Es gehört das Element l mit zu N, so daß N = N'  + l. N' ist dann offenbar auch Bestandteil von M. Wäre nun N ~ M + l, so könnte nach obigem Hilfssatze zwischen den Mengen  N und M + l  eine solche gegenseitig eindeutige und vollständige Korrespondenz hergestellt werden, daß das Element  l von N dem Element l von M + l entspricht; durch diese Zuordnung würde auch eine Zuordnung zwischen N' nd M hergestellt sein und es wäre M seinem Bestandteil N' äquivalent, gegen unsere Voraussetzung. 2) Es gehört l nicht mit zu N; dann ist N nicht nur Bestandteil von M + l sondern auch von M. Wäre in diesem Falle N ~ M + l, so nehme man irgendeine gegenseitig eindeutige vollständige Zuordnung der beiden Mengen M + l und N und es möge bei derselben dem Elemente l von M + l das Element n vonN entsprechen. Ist N =N' + n, so wäre durch diese Zuordnung auch eine gegenseitig eindeutige und vollständige Korrespondenz zwischen N' und M hergestellt, was, da auch hier N' Bestandteil von M ist, gegen die gemachte Voraussetzung streitet, wonach M keinem ihrer Bestandteile äquivalent ist.
[Cantor's collected works p. 415]
 That is an indirect proof.
 It is applying induction in set theory.
 
You seem to prefer direct proofs.
 That is irrelevant.
It is relevant to the extent that you cannot learn form it how a direct
proof should be presented.

But in fact it supplies the shortest proof that not all natural numbers of Cantor's set can be individually defined:
Since all natural numbers can be reduced to the empty set by subtracting them collectively,
ℕ \ {1, 2, 3, ...} = { }
they could also be reduced to the empty set by subtracting them individually - if this was possible. But then the well-order would force the existence of a last one. Contradiction.
The expression "subtracting them individually" should be represented
mathematically, e.g. a sequence. Informal expressions tend to lead
to bad proofs.
The "the well-order would force the existence of a last one" needs be
proven before it can be used.
--
Mikko

Date Sujet#  Auteur
17 May 25 * Simple enough for every reader?118WM
18 May 25 +* Re: Simple enough for every reader?42Mikko
18 May 25 i+- Re: Simple enough for every reader?1Ross Finlayson
18 May 25 i`* Re: Simple enough for every reader?40WM
18 May 25 i +* Re: Simple enough for every reader?5Ross Finlayson
18 May 25 i i`* Re: Simple enough for every reader?4WM
19 May 25 i i `* Re: Simple enough for every reader?3Mikko
19 May 25 i i  `* Re: Simple enough for every reader?2WM
20 May 25 i i   `- Re: Simple enough for every reader?1Mikko
19 May 25 i `* Re: Simple enough for every reader?34Mikko
19 May 25 i  `* Re: Simple enough for every reader?33WM
20 May 25 i   `* Re: Simple enough for every reader?32Mikko
20 May 25 i    `* Re: Simple enough for every reader?31WM
22 May 25 i     `* Re: Simple enough for every reader?30Mikko
22 May 25 i      `* Re: Simple enough for every reader?29WM
23 May 25 i       `* Re: Simple enough for every reader?28Mikko
23 May 25 i        `* Re: Simple enough for every reader?27WM
24 May 25 i         `* Re: Simple enough for every reader?26Mikko
24 May 25 i          `* Re: Simple enough for every reader?25WM
25 May 25 i           `* Re: Simple enough for every reader?24Mikko
25 May 25 i            `* Re: Simple enough for every reader?23WM
26 May 25 i             `* Re: Simple enough for every reader?22Mikko
26 May 25 i              `* Re: Simple enough for every reader?21WM
27 May 25 i               `* Re: Simple enough for every reader?20Mikko
27 May 25 i                `* Re: Simple enough for every reader?19WM
28 May 25 i                 `* Re: Simple enough for every reader?18Mikko
28 May 25 i                  `* Re: Simple enough for every reader?17WM
29 May 25 i                   `* Re: Simple enough for every reader?16Mikko
29 May 25 i                    `* Re: Simple enough for every reader?15WM
30 May 25 i                     `* Re: Simple enough for every reader?14Mikko
30 May 25 i                      `* Re: Simple enough for every reader?13WM
31 May 25 i                       `* Re: Simple enough for every reader?12Mikko
31 May14:40 i                        `* Re: Simple enough for every reader?11WM
1 Jun12:53 i                         `* Re: Simple enough for every reader?10Mikko
1 Jun15:15 i                          `* Re: Simple enough for every reader?9WM
3 Jun09:08 i                           `* Re: Simple enough for every reader?8Mikko
3 Jun14:17 i                            `* Re: Simple enough for every reader?7WM
4 Jun07:43 i                             `* Re: Simple enough for every reader?6Mikko
4 Jun18:32 i                              `* Re: Simple enough for every reader?5WM
5 Jun08:32 i                               `* Re: Simple enough for every reader?4Mikko
5 Jun21:36 i                                `* Re: Simple enough for every reader?3WM
6 Jun08:37 i                                 `* Re: Simple enough for every reader?2Mikko
6 Jun11:47 i                                  `- Re: Simple enough for every reader?1WM
18 May 25 `* Re: Simple enough for every reader?75Ben Bacarisse
19 May 25  +* Re: Simple enough for every reader?2olcott
19 May 25  i`- Re: Simple enough for every reader?1WM
19 May 25  `* Re: Simple enough for every reader?72WM
20 May 25   `* Re: Simple enough for every reader?71Ben Bacarisse
20 May 25    +* Re: Simple enough for every reader?3Mikko
20 May 25    i+- Re: Simple enough for every reader?1WM
21 May 25    i`- Re: Simple enough for every reader?1Ben Bacarisse
20 May 25    `* Re: Simple enough for every reader?67WM
21 May 25     `* Re: Simple enough for every reader?66Ben Bacarisse
21 May 25      `* Re: Simple enough for every reader?65WM
23 May 25       `* Re: Simple enough for every reader?64Ben Bacarisse
24 May 25        +* Re: Simple enough for every reader?25Mikko
25 May 25        i`* Re: Simple enough for every reader?24Ben Bacarisse
25 May 25        i `* Re: Simple enough for every reader?23Mikko
26 May 25        i  `* Re: Simple enough for every reader?22Ben Bacarisse
26 May 25        i   `* Re: Simple enough for every reader?21Mikko
27 May 25        i    `* Re: Simple enough for every reader?20Ben Bacarisse
27 May 25        i     `* Re: Simple enough for every reader?19Mikko
27 May 25        i      +- Re: Simple enough for every reader?1WM
28 May 25        i      `* Re: Simple enough for every reader?17Ben Bacarisse
28 May 25        i       +* Re: Simple enough for every reader?13WM
29 May 25        i       i`* Re: Simple enough for every reader?12Ben Bacarisse
29 May 25        i       i `* Re: Simple enough for every reader?11WM
30 May 25        i       i  `* Re: Simple enough for every reader?10Ben Bacarisse
30 May 25        i       i   `* Re: Simple enough for every reader?9WM
31 May 25        i       i    `* Re: Simple enough for every reader?8Ben Bacarisse
31 May15:11        i       i     `* Re: Simple enough for every reader?7WM
2 Jun02:56        i       i      `* Re: Simple enough for every reader?6Ben Bacarisse
2 Jun12:21        i       i       `* Re: Simple enough for every reader?5WM
4 Jun01:35        i       i        `* Re: Simple enough for every reader?4Ben Bacarisse
4 Jun18:50        i       i         `* Re: Simple enough for every reader?3WM
5 Jun22:51        i       i          `* Re: Simple enough for every reader?2Ben Bacarisse
6 Jun12:30        i       i           `- Re: Simple enough for every reader?1WM
29 May 25        i       `* Re: Simple enough for every reader?3Mikko
29 May 25        i        `* Re: Simple enough for every reader?2Ben Bacarisse
30 May 25        i         `- Re: Simple enough for every reader?1Mikko
24 May 25        `* Re: Simple enough for every reader?38WM
25 May 25         `* Re: Simple enough for every reader?37Ben Bacarisse
25 May 25          `* Re: Simple enough for every reader?36WM
26 May 25           `* Re: Simple enough for every reader?35Ben Bacarisse
26 May 25            +* Re: Simple enough for every reader?32WM
26 May 25            i+* Re: Simple enough for every reader?14Mikko
26 May 25            ii`* Re: Simple enough for every reader?13WM
27 May 25            ii `* Re: Simple enough for every reader?12Mikko
27 May 25            ii  `* Re: Simple enough for every reader?11WM
29 May 25            ii   `* Re: Simple enough for every reader?10Mikko
29 May 25            ii    `* Re: Simple enough for every reader?9WM
30 May 25            ii     `* Re: Simple enough for every reader?8Mikko
30 May 25            ii      `* Re: Simple enough for every reader?7WM
31 May 25            ii       `* Re: Simple enough for every reader?6Mikko
31 May14:47            ii        `* Re: Simple enough for every reader?5WM
1 Jun12:58            ii         `* Re: Simple enough for every reader?4Mikko
1 Jun15:09            ii          `* Re: Simple enough for every reader?3WM
3 Jun09:11            ii           `* Re: Simple enough for every reader?2Mikko
3 Jun14:26            ii            `- Re: Simple enough for every reader?1WM
27 May 25            i`* Re: Simple enough for every reader?17Ben Bacarisse
27 May 25            i `* Re: Simple enough for every reader?16WM
26 May 25            `* Re: Simple enough for every reader?2WM

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal