Liste des Groupes | Revenir à s logic |
On 2025-06-28 13:56:57 +0000, WM said:The definition of bijection requires completeness.
On 28.06.2025 11:56, Mikko wrote:There is no mathematical definiton of "complete enumeration"On 2025-06-27 19:36:41 +0000, WM said:>
>On 27.06.2025 09:33, Mikko wrote:>On 2025-06-26 13:09:32 +0000, WM said:>>>>
If we subtract in the order that is used for enumerating then a last one is necessary.
No, there is no last one in an infinite enumeration.
Then it is not finished or completed.
No, but it can be continued.
That is potential infinity. But Cantor claimed complete enumeration.
so it isNo. Cantor claims all, every and complete:
possible that Cantor's enumeartion is "complete" is one sense and
"incomplete" in another.
It means that no further element can be found later on.The notion set can only be applied to complete sets. i.e., sets which cannot be continued.Saying that every set is "complete" does not mean anything,
Then it cannot be. If it is that all natural numbers are subtracted in their order, then it is that a last one is subtracted.No. You said that every set is complete, so {1, 2, 3, ...}, which mustAll are removed when all are removed.>
When done in natural order, then a last one is to be removed before all are removed. ℕ \ {1, 2, 3, ...} = { }.
be a set in order to be valid for the context is complete and so is
ℕ \ {1, 2, 3, ...}, which is just another way to say { }-
This cannot be accomplishedThere is nothing to accomplish. What is is, that's all.
You are wrong. Here are only few pages of my Book Transfinity:There is nothing religious in Cantor's arguments. The only traces ofBeing completed is not a mathematical concept. An infinite sequence just>
is infinite.
1.1 Cantor's original German terminology on infinite sets
>
The reader fluent in German may be interested in the subtleties of Cantor's terminology on actual infinity the finer distinctions of which are not easy to express in English. While Cantor early used "vollständig" and "vollendet" to express "complete" and "finished", the term "fertig", expressing "finished" too but being also somewhat reminiscent of "ready", for the first time appeared in a letter to Hilbert of 26 Sep 1897, where all its appearances had later been added to the letter.
But Cantor already knew that there are incomplete, i.e., potentially infinite sets like the set of all cardinal numbers. He called them "absolutely infinite". The details of this enigmatic notion are explained in section 1.2 (see also section 4.1. – Unfortunately it has turned out impossible to strictly separate Cantor's mathematical and religious arguments.)
his religious motivations are in the choice of his symbols, in paricular
aleph and omega.
Yes.1.1.1 VollständigAbove "vollständig" qualifies the verb "zuordnen" so the meaning may
>
"Wenn zwei wohldefinierte Mannigfaltigkeiten M und N sich eindeutig und vollständig, Element für Element, einander zuordnen lassen (was, wenn es auf eine Art möglich ist, immer auch noch auf viele andere Weisen geschehen kann), so möge für das Folgende die Ausdrucksweise gestattet sein, daß diese Mannigfaltigkeiten gleiche Mächtigkeit haben, oder auch, daß sie äquivalent sind." [Cantor, p. 119]
differe from what it would mean when qualifying the word "set" or
any word that refers to all or some sets. It could be traslated as
"fully" or "completely", meaning that no member of either set is
unpaired.
Yes. But "vollständig" is important. Otherwise "countable" would have no meaning."gegenseitig eindeutige und vollständige Korrespondenz" [Cantor, p. 238]Usually "eindeutige und vollständige" is expressed in English with
"one-to-one", or "gegenseitig eindeutige und vollständige Korrespondenz"
is expressed as "bijection". The word "gegenseitig" is not really
necessaty but at the time the idea was new and therefore greater clarity
was needed.
Yes. both bijection and one-to-one imply completeness."Die sämtlichen Punkte l unsrer Menge L sind also in gegenseitig eindeutige und vollständige Beziehung zu sämtlichen Punkten f der Menge F gebracht," [Cantor, p. 241]The same meaning and translation ("one-to-one" or "bijection") applies
here, too.
In all these example "eindeutig and vollständig" is an feature ofA bijection is a set too.
the correspondence, not of any set.
A correspondence can be expressedSet is not understood today. It was understood by Cantor: Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.
with a set but was not in the above exmples (because "corresspondence"
was well understood at the time but "set" was not).
So no example of a set of being "complete".Without completeness countability and uncountability both would be meaningless
No. Here he talks about the "Form des Vollendet-unendlichen". Vollendet means completed.1.1.2 VollendetThis basically says that there is no real difference between actual
>
"Zu dem Gedanken, das Unendlichgroße [...] auch in der bestimmten Form des Vollendet-unendlichen mathematisch durch Zahlen zu fixieren, bin ich fast wider meinen Willen, weil im Gegensatz zu mir wertgewordenen Traditionen, durch den Verlauf vieljähriger wissenschaftlicher Bemühungen und Versuche logisch gezwungen worden," [Cantor, p. 175]
and potential infinity.
Uncompleted does not apply to sets. Therefore I use the notion collection for the potentially infinite."da nun jeder Typus auch im letzteren Falle etwas in sich Bestimmtes, vollendetes ist, so gilt ein gleiches von der zu ihm gehörigen Zahl. [...] 'Eigentlichunendlichem = Transfinitum = Vollendetunendlichem = Unendlichseiendem = kategorematice infinitum' [...] dieser Unterschied ändert aber nichts daran, daß als ebenso bestimmt und vollendet anzusehen ist, wie 2," [G. Cantor, letter to K. Laßwitz (15 Feb 1884). Cantor, p. 395]Thie says that sets are always complete, so what has been said about
>
"Wir wollen nun zu einer genaueren Untersuchung der perfekten Mengen übergehen. Da jede solche Punktmenge gewissermaßen in sich begrenzt, abgeschlossen und vollendet ist, so zeichnen sich die perfekten Mengen vor allen anderen Gebilden durch besondere Eigenschaften aus." [Cantor, p. 236]
uncompleted infinities either aplies to completed infinities as well
or does not apply to sets.
Yes. If all prime numbers could be known, the same contradiction would arise.1.1.3 FertigThis says that if there were a set of all cardinals that would create
>
"Die Totalität aller Alefs ist nämlich eine solche, welche nicht als eine bestimmte, wohldefinirte fertige Menge aufgefaßt werden kann. [...] 'Wenn eine bestimmte wohldefinirte fertige Menge eine Cardinalzahl haben würde, die mit keinem der Alefs zusammenfiele, so müßte sie Theilmengen enthalten, deren Cardinalzahl irgend ein Alef ist, oder mit anderen Worten, die Menge müßte die Totalität aller Alefs in sich tragen.' Daraus ist leicht zu folgern, daß unter der eben genannten Voraussetzung (einer best. Menge, deren Cardinalzahl kein Alef wäre) auch die Totalität aller Alefs als eine best. wohldefinirte fertige Menge aufgefaßt werden könnte." [G. Cantor, letter to D. Hilbert (26 Sep 1897)]
a contradiction.
Here "fertig" can be translated as "completed".Yes.
These are various ways to point out that sets are immutable, notYes. But the collection of known prime numbers, for instance, is never completed.
in the middle of a construction process.
So it is. But being complete is the precondition of all sets.ZFC has one word for the meaning of completeness: set.ZFC (or plain ZF) does not specify any meaning for "set".
Les messages affichés proviennent d'usenet.