Sujet : Re: how
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 22. May 2024, 16:48:04
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <0e7906d7-fa17-44c1-b45c-4e08ab8fbb89@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11
User-Agent : Mozilla Thunderbird
On 5/22/2024 6:43 AM, WM wrote:
Le 22/05/2024 à 01:27, Jim Burns a écrit :
ℝ is ℚ and points between non.∅ splits of ℚ
for any x > 0
>
that you can determine
For any x > 0 in ℚ or between a non.∅ split of ℚ
more.than.any.k<ℵ₀ unit.fractions
sit before x
among them are ⅟⌊(1+sₓ/rₓ)⌋ to ⅟⌊(k+1+sₓ/rₓ)⌋
0 < rₓ/sₓ < x
for any x > 0
more.than.any.k<ℵ₀ unit.fractions
sit before x
among them are ⅟⌊(1+sₓ/rₓ)⌋ to ⅟⌊(k+1+sₓ/rₓ)⌋
>
Ax_def > 0: NUF(x_def) = ℵo is right.
>
∀x ∈ ℝ: x > 0 ⇒ NUF(x) = ℵ₀
>
If
there is no unit fraction smaller than all x > 0,
then
there is an x > 0 preventing this.
There is no unit.fraction ⅟k smaller than ⅟k⁺¹
¬∃¹ᐟᴺ ⅟k: ⅟k ≤ ⅟k⁺¹
There is no unit.fraction ⅟k smaller than all x > 0
¬∃¹ᐟᴺ ⅟k: ∀ᴿx > 0: ⅟k ≤ x
There is no x > 0 smaller than all unit fractions.
¬∃ᴿx > 0: ∀¹ᐟᴺ ⅟k: x ≤ ⅟k
| Assume otherwise.
| Assume x¹ᐟᴺ > 0: ∀¹ᐟᴺ ⅟k: x¹ᐟᴺ ≤ ⅟k
|
| b¹ᐟᴺ is the greatest lower bound of unit fractions.
| 0 < x¹ᐟᴺ ≤ b¹ᐟᴺ
|
| 0 < ½⋅b¹ᐟᴺ < b¹ᐟᴺ < 2⋅b¹ᐟᴺ
| No unit.fraction < ½⋅b¹ᐟᴺ
| Unit fraction ⅟k < 2⋅b¹ᐟᴺ
|
| However,
| ⅟k < 2⋅b¹ᐟᴺ
| (⅟k)/4 < (2⋅b¹ᐟᴺ)/4
| ⅟(4⋅k) < ½⋅b¹ᐟᴺ
| Unit.fraction ⅟(4⋅k) < ½⋅b¹ᐟᴺ
| Contradiction.
Therefore,
there is no x > 0 smaller than all unit fractions.
¬∃ᴿx > 0: ∀¹ᐟᴺ ⅟k: x ≤ ⅟k
That is merciless logic.
∀y:∃x≠y:x<y ⟺
¬∃y:¬∃x≠y:x<y ⟺
¬∃y:∀x≠y:¬(x<y) ⟺
¬∃y:∀x≠y:y<x ⟺
¬∃x:∀y≠x:x<y