Sujet : Re: how
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 19. May 2024, 21:28:18
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <1e67c0e8-bf67-4d48-9896-57d429fd770c@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11
User-Agent : Mozilla Thunderbird
On 5/19/2024 11:46 AM, WM wrote:
Le 17/05/2024 à 21:08, Jim Burns a écrit :
On 5/17/2024 10:08 AM, WM wrote:
Between each pair of unit fractions,
there is a finite distance.
>
Before each unit fraction ⅟n,
there is a smaller unit fraction ⅟(n+1).
>
These two conditions
cannot be satisfied simultaneously.
No.
1.
Between each pair of unit fractions,
there is a finite distance.
For ⅟m≠⅟n: |⅟n-⅟m|>0
because ⅟m≠⅟n
2.
Before each unit fraction ⅟n,
there is a smaller unit fraction ⅟(n+1).
For each n countable.to from 0
n⁺¹ is countable.to from n
n⁺¹ is countable.to from 0 through n
n < n⁺¹
n < n⁺¹
n⋅⅟n⁺¹⋅⅟n < n⁺¹⋅⅟n⁺¹⋅⅟n
⅟n⁺¹ < ⅟n
"Infinite" does not mean "humongous".