Sujet : Re: question
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 17. May 2024, 13:56:42
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <401d3516-fca4-4b3c-a089-ddd40718d303@att.net>
References : 1
User-Agent : Mozilla Thunderbird
On 5/16/2024 7:41 PM, Peter Fairbrother wrote:
Is lim (cos pi/2n)^n = 1 as n -> infinity?
Yes, 1.
Take the logarithm of both sides,
Swap log and lim, because continuity.
Evaluate lim by L'Hôpital's rule .
Take the exponential of both sides.
lim(cos(1/n)^n
[n→inf])
exp(log(lim(cos(1/n)^n)))
[n→inf])))
exp(lim(log(cos(1/n)^n)))
[n→inf]))
continuity
exp(lim(
n*log(cos(1/n))
[n→inf]))
exp(lim(
log(cos(1/n))
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
1/n
[n→inf]))
exp(lim(
log(cos(x))
⎯⎯⎯⎯⎯⎯⎯⎯⎯
x
[x→0]))
exp(lim(
-sin(x)/cos(x)
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
1
[x→0]))
L'Hôpital
exp(0)
1
Any formula for calculating it from a given n
(other than the obvious)?
What is it that is obvious?