Sujet : Re: There is a first/smallest integer (in Mückenland)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.mathDate : 17. Jul 2024, 21:37:01
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <45c2168329b760983a8cbc9139b6decf1a1edf5b@i2pn2.org>
References : 1 2 3 4 5 6
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Wed, 17 Jul 2024 17:17:54 +0000 schrieb WM:
Le 17/07/2024 à 19:01, joes a écrit :
Am Wed, 17 Jul 2024 15:08:30 +0000 schrieb WM:
Le 17/07/2024 à 16:56, Moebius a écrit :
Am 17.07.2024 um 16:43 schrieb WM:
Can you explain how NUF(x) can [jump] from 0 [at x = 0] to [aleph_0]
[at any]
point x [> 0] although all unit fractions are separated by finite
distances [...]
Yes, of course: For each and every x e IR, x > 0 there are
countably-infinitely many unit fractions which are <= x. (Hint: No
first one.)
Thema verfehlt. The question is: How does NUF(x) increase from 0 to
more? There is a point where NUF is 0 and then it increases. How?
The same as the sign function.
No, ℵo finite intervals do not fit between [0, 1] and (0, 1]. The sign
function fits.
Where do you get this requirement from?
Consider the sign function times infinity.
-- Am Fri, 28 Jun 2024 16:52:17 -0500 schrieb olcott:Objectively I am a genius.