Sujet : Re: how
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 05. Jun 2024, 22:31:02
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <4f78b5b4-9a08-408f-8732-9b5a622cb559@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11
User-Agent : Mozilla Thunderbird
On 6/5/2024 4:39 PM, WM wrote:
Le 05/06/2024 à 21:28, Jim Burns a écrit :
On 6/5/2024 6:43 AM, WM wrote:
Le 04/06/2024 à 23:31, Jim Burns a écrit :
On 6/4/2024 10:10 AM, WM wrote:
Le 04/06/2024 à 04:07, Jim Burns a écrit :
Assumption (2.) describes
objects in our familiar arithmetic.
>
That is true
>
Thank you.
>
Assumption 2.
ℕ⁺ holds all.and.only
numbers countable.to by.1 from.0
>
Of course.
>
Assumption 2 in detail.
>
does not contradict that
contrary to Cantor's claim
most natural numbers are uncountable,
although with n
also n^n^n is countable.
(2.)
For numbers i,j,k countable.to by.1 from.0
i before j before k implies i before k
exactly one is true of
'j before k', 'j after k', 'j equals k'
i < j < k ⇒ i < k
j <≠≯ k ∨ j ≮=≯ k ∨ j ≮≠> k
| Assume ∀ᴺj ∃ᴺk≠j: j<k
|
| ¬∃ᴺj ¬∃ᴺk≠j: j<k
| ¬∃ᴺj ∀ᴺk≠j: ¬(j<k)
| ¬∃ᴺj ∀ᴺk≠j: k<j
|
| s/j/i s/k/j s/i/k
| ¬∃ᴺk ∀ᴺj≠k: j<k
Therefore,
∀ᴺj ∃ᴺk≠j: j<k implies ¬∃ᴺk ∀ᴺj≠k: j<k
Define
darkᵂᴹ k ⇔ ∀ᴺj≠k: j<k
¬∃ᴺk: darkᵂᴹ k
Darkᵂᴹ numbers do not exist in ℕ⁺