Sujet : Re: how
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 06. Jun 2024, 19:35:10
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <65e48016-ecea-4832-bcdb-a5e3d94a66cd@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11
User-Agent : Mozilla Thunderbird
On 6/6/2024 9:27 AM, WM wrote:
Le 05/06/2024 à 23:31, Jim Burns a écrit :
Assumption (2.) describes
objects in our familiar arithmetic.
>
That is true
>
Thank you.
>
Assumption 2.
ℕ⁺ holds all.and.only
numbers countable.to by.1 from.0
>
Of course.
Darkᵂᴹ numbers do not exist in ℕ⁺
>
That is potential infinity.
They are objects in our familiar arithmetic.
It is not Cantor's actual infinity.
∀n ∈ ℕ⁺: |ℕ \ {1, 2, 3, ..., n}| = ℵo.
Define
{n<} = ℕ⁺\{1,2,3,...,n}
n.followers.in.ℕ⁺
|n<| = |{n<}| = |ℕ⁺\{1,2,3,...,n}|
countable.to n is ℵ₀.followed.in.ℕ⁺ ⇔
|ℕ⁺\{1,2,3,...,n}| = ℵ₀ ⇔
ℵ₀=|n<|
Each k ∈ ℕ⁺ is ℵ₀.followed.in.ℕ⁺
| Assume otherwise.
| Assume k ∈ ℕ⁺ is not ℵ₀.followed.in.ℕ⁺
| ¬(ℵ₀=|k<|)
|
| exists first j ∈ ℕ⁺ such that
| j is not ℵ₀.followed.in.ℕ⁺ and
| each i < j is ℵ₀.followed.in.ℕ⁺
|
| j is not ℵ₀.followed.in.ℕ⁺ and
| j-1 is ℵ₀.followed.in.ℕ⁺
| |j<| ≠ |j-1<|
|
| However,
| i ⟼ i+1 is 1.to.1 from.ℕ⁺ to.ℕ⁺
| i ⟼ i+1 is 1.to.1 from.{j-1<} to.{j<}
| |j-1<| ≤ |j<|
|
| {j-1<} ⊇ {j<}
| |j-1<| ≥ |j<|
| |j-1<| = |j<|
| Contradiction.
Therefore,
each k ∈ ℕ⁺ is ℵ₀.followed.in.ℕ⁺
It is not Cantor's actual infinity.
It is our familiar arithmetic.