Sujet : Re: Division of two complex numbers
De : r.hachel (at) *nospam* liscati.fr.invalid (Richard Hachel)
Groupes : sci.mathDate : 20. Jan 2025, 20:21:02
Autres entêtes
Organisation : Nemoweb
Message-ID : <6bu9vkI1-cJwI0DVvl47MCKHzfQ@jntp>
References : 1 2
User-Agent : Nemo/1.0
Le 20/01/2025 à 19:33, Jim Burns a écrit :
On 1/20/2025 6:02 AM, Richard Hachel wrote:
Division of two complex numbers.
>
Now let's set Z=(a+ib)/(a'+ib')
((a + ib)(c + id))⃰ =
(ac + i(ad+bc) + i²bd)⃰ =
No. You can't.
=(ac + i(ad+bc) + (ib*id)⃰ You don't know what i is but at this moment, you know that it is both i=1 and i=-1.
If it is 1 then 1²=1.
If it is -1 then -1²=1
In any case, its square will be 1 because in your two solutions, you will have to give your choice, but not both at the same time.
(ac + i(ad+bc) + (sₑ+i⋅sₙ)bd)⃰ =
((ac+sₑbd) + i(ad+bc+sₙbd))⃰ =
(ac+sₑbd) - i(ad+bc+sₙbd)
ac+bd+i(ad+bc) with i=(+/-)1 at final choise.
R.H.