Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.math
Date : 14. Dec 2024, 19:57:47
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <784164c0-b36a-4650-a323-dccd461b330c@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 12/14/2024 5:26 AM, WM wrote:
On 14.12.2024 05:54, Jim Burns wrote:
On 12/13/2024 2:31 PM, WM wrote:
On 13.12.2024 20:00, Jim Burns wrote:
On 12/13/2024 6:25 AM, WM wrote:

If endegments were defined as
E(n) = {n+1, n+2, ...}:
>
E(0) = {1, 2, 3, ...}
E(1) = {2, 3, 4, ...}
E(2) = {3, 4, 5, ...}
...
E(ω-1} = { }.
Then this change from content to index
would even be more obvious.

One problem which
Eᑉ(ω-1) = {}
has  is that
'finite' is NOT defined the way in which
you (WM) think 'finite' should be,
which means
ω is NOT defined the way in which
you (WM) think ω should be.
>
Don't say what not is.
For sets A and B with one.to.one A.to.B
B is not.smaller.than A
[1] (see below)
For non.empty sets A and B
such that B is not.smaller.than A
emptier.by.one B\{b} is not.smaller.than
emptier.by.one A\{a}
A finite ordinal is smaller.than its successor.
An infinite ordinal is not.smaller.than its successor.
[2] (see below)
Each infinite ordinal bounds all finite ordinals.
ω is the first upper bound of finite ordinals.

Which means
⎛ if k is finite
⎝ then k+1 is finite
>
This contradicts the fact that
nothing remains but
every element can go only as a single.
⎛ if k is finite
⎝ then k+1 is finite
⎛ Assume otherwise.
⎜ Assume k is finite and k+1 is infinite.

⎜ k+1 is infinite.
⎜ ⟦0,k+1⦆ is not.smaller.than ⟦0,k+1⦆∪{k+1}
⎜ ⟦0,k+1⦆ = ⟦0,k⦆∪{k}

⎜ ⟦0,k⦆∪{k} is not.smaller.than
⎜ ⟦0,k+1⦆∪{k+1}

⎜ From [1] above, it follows that
⎜ emptier.by.one ⟦0,k⦆ is not.smaller.than
⎜ emptier.by.one ⟦0,k+1⦆
⎜ ⟦0,k+1⦆ = ⟦0,k⦆∪{k}

⎜ ⟦0,k⦆ is not.smaller.than ⟦0,k⦆∪{k}
⎜ k is infinite.

⎜ However, k is finite.
⎝ Contradiction.
[3]
Therefore,
⎛ if k is finite
⎝ then k+1 is finite

E(ω-1} = { }.

Don't say what not is.
If ω-1 exists
then
⎛ ω-1 is last.before.ω
⎜ ω is first bound of the finites
⎜ ω-1 is not any before.ω bound of the finites
⎜ ω-1 is not infinite (see [2])
⎜ ω-1 is finite
⎜ ω-1 is smaller.than (ω-1)+1, also finite (see [3])
⎜ (ω-1)+1 is smaller.than (ω-1)+2, also finite
⎜ ω bounds w-1, (ω-1)+1, (ω-1)+2
⎜ ω-1 < (ω-1)+1 < (ω-1)+2 ≤ ω
⎝ ω-1 is not last.before.ω
If ω-1 exists, ω-1 gives us the contradictions.
Therefore,
ω-1 doesn't exist.
----
[1]
For non.empty sets A and B such that
B is not.smaller.than A
emptier.by.one B\{b} is not.smaller.than
emptier.by.one A\{a}
B is not.smaller.than A
one.to.one g: A ⇉ B
Define
⎛ f(g⁻¹(b)) = g(a)
⎝ otherwise f(x) = g(x)
one.to.one f: A\{a} ⇉ B\{b}
B\{b} is not.smaller.than A\{a}
----
[2]
Each infinite ordinal bounds all finite ordinals.
⎛ Assume otherwise.
⎜ Assume ¬(finite k < infinite ψ)

⎜ From [4] below
⎜ for two (well.ordered) ordinals,
⎜ whether finite or infinite,
⎜ (k < ψ) ∨ (ψ < k)

⎜ infinite ψ < finite k
⎜ ⟦0,ψ⦆ s ⟦0,k⦆

⎜ infinite ψ
⎜ ⟦0,ψ⦆ is not.smaller.than ⟦0,ψ⦆∪{ψ}
⎜ ⟦0,ψ⦆ is not.smaller.than ⟦0,ψ⦆∪{k}
⎜ ⟦ψ,k⦆ is not.smaller.than ⟦ψ,k⦆
⎜ ⟦0,ψ⦆∪⟦ψ,k⦆ is not.smaller.than ⟦0,ψ⦆∪⟦ψ,k⦆∪{k}
⎜ ⟦0,k⦆ is not.smaller.than ⟦0,k⦆∪{k}
⎜ infinite k

⎜ However,
⎜ k is finite.
⎝ Contradiction.
Therefore,
each infinite ordinal bounds all finite ordinals.
----
[4]
For two of the (well.ordered) ordinals,
whether finite or infinite,
(k < ψ) ∨ (ψ < k)
Non.empty {k,ψ} holds a first element.
Either it's k, and k < ψ
or it's ψ, and ψ < k

Date Sujet#  Auteur
27 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)392WM
27 Nov 24 +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
27 Nov 24 i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)389Jim Burns
28 Nov 24  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)387WM
28 Nov 24  i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)379joes
28 Nov 24  ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)378WM
28 Nov 24  ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
28 Nov 24  ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
28 Nov 24  ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
28 Nov 24  ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
28 Nov 24  ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)373FromTheRafters
28 Nov 24  ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)372WM
29 Nov 24  ii   +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
29 Nov 24  ii   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
29 Nov 24  ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)369FromTheRafters
29 Nov 24  ii    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)367WM
29 Nov 24  ii    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)366FromTheRafters
29 Nov 24  ii    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)365WM
29 Nov 24  ii    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)364FromTheRafters
30 Nov 24  ii    i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)363WM
30 Nov 24  ii    i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)362FromTheRafters
30 Nov 24  ii    i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)361WM
30 Nov 24  ii    i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)10FromTheRafters
30 Nov 24  ii    i      i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
30 Nov 24  ii    i      ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
30 Nov 24  ii    i      ii `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
30 Nov 24  ii    i      ii  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4joes
30 Nov 24  ii    i      ii   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
1 Dec 24  ii    i      ii    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2joes
1 Dec 24  ii    i      ii     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
30 Nov 24  ii    i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)2Ross Finlayson
2 Dec 24  ii    i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary, infinite-middle)1Chris M. Thomasson
2 Dec 24  ii    i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)350Chris M. Thomasson
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)90Moebius
3 Dec 24  ii    i       i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)89Chris M. Thomasson
3 Dec 24  ii    i       i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)84Moebius
3 Dec 24  ii    i       i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)82Chris M. Thomasson
3 Dec 24  ii    i       i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)81Moebius
3 Dec 24  ii    i       i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)80Chris M. Thomasson
3 Dec 24  ii    i       i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)79Chris M. Thomasson
3 Dec 24  ii    i       i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)17Moebius
3 Dec 24  ii    i       i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)16Chris M. Thomasson
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i    i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
3 Dec 24  ii    i       i i    i i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Moebius
3 Dec 24  ii    i       i i    i ii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Moebius
3 Dec 24  ii    i       i i    i ii i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
3 Dec 24  ii    i       i i    i ii i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i ii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
3 Dec 24  ii    i       i i    i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
3 Dec 24  ii    i       i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)61Ben Bacarisse
3 Dec 24  ii    i       i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
3 Dec 24  ii    i       i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)59Chris M. Thomasson
4 Dec 24  ii    i       i i      +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)55Moebius
4 Dec 24  ii    i       i i      i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)54Moebius
4 Dec 24  ii    i       i i      i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)52Chris M. Thomasson
4 Dec 24  ii    i       i i      i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)51Moebius
4 Dec 24  ii    i       i i      i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)50Moebius
4 Dec 24  ii    i       i i      i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)49FromTheRafters
4 Dec 24  ii    i       i i      i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)48Ben Bacarisse
4 Dec 24  ii    i       i i      i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)47Moebius
4 Dec 24  ii    i       i i      i i     +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)45Ben Bacarisse
4 Dec 24  ii    i       i i      i i      +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1FromTheRafters
4 Dec 24  ii    i       i i      i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)43Chris M. Thomasson
4 Dec 24  ii    i       i i      i i       +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ben Bacarisse
5 Dec 24  ii    i       i i      i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)41WM
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)19joes
5 Dec 24  ii    i       i i      i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
5 Dec 24  ii    i       i i      i i        i +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8joes
5 Dec 24  ii    i       i i      i i        i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)6joes
7 Dec 24  ii    i       i i      i i        i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
7 Dec 24  ii    i       i i      i i        i i   +- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1joes
7 Dec 24  ii    i       i i      i i        i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Richard Damon
7 Dec 24  ii    i       i i      i i        i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
8 Dec 24  ii    i       i i      i i        i i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
5 Dec 24  ii    i       i i      i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8FromTheRafters
5 Dec 24  ii    i       i i      i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5WM
5 Dec 24  ii    i       i i      i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4FromTheRafters
5 Dec 24  ii    i       i i      i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3WM
6 Dec 24  ii    i       i i      i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2FromTheRafters
6 Dec 24  ii    i       i i      i i        i  i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
6 Dec 24  ii    i       i i      i i        i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Moebius
5 Dec 24  ii    i       i i      i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)20Richard Damon
5 Dec 24  ii    i       i i      i i        i+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)18WM
6 Dec 24  ii    i       i i      i i        ii+* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)8Richard Damon
6 Dec 24  ii    i       i i      i i        iii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7WM
6 Dec 24  ii    i       i i      i i        iii +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)5joes
6 Dec 24  ii    i       i i      i i        iii i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4WM
6 Dec 24  ii    i       i i      i i        iii `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Richard Damon
6 Dec 24  ii    i       i i      i i        ii`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)9Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
6 Dec 24  ii    i       i i      i i        `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Chris M. Thomasson
4 Dec 24  ii    i       i i      i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1WM
4 Dec 24  ii    i       i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)3Ben Bacarisse
3 Dec 24  ii    i       i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)4Jim Burns
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)2Moebius
2 Dec 24  ii    i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)255FromTheRafters
29 Nov 24  ii    `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson
29 Nov 24  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)7Jim Burns
28 Nov 24  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)1Ross Finlayson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal