Re: More complex numbers than reals?

Liste des GroupesRevenir à s math 
Sujet : Re: More complex numbers than reals?
De : ben (at) *nospam* bsb.me.uk (Ben Bacarisse)
Groupes : sci.math
Date : 11. Jul 2024, 01:35:49
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <87plrkn4t5.fsf@bsb.me.uk>
References : 1 2 3 4 5 6 7 8 9 10 11 12
User-Agent : Gnus/5.13 (Gnus v5.13)
Moebius <invalid@example.invalid> writes:

Am 11.07.2024 um 02:28 schrieb Chris M. Thomasson:
On 7/10/2024 5:24 PM, Moebius wrote:
Am 11.07.2024 um 02:16 schrieb Chris M. Thomasson:
>
{a, b, c} vs { 3, 4, 5 }
>
Both have the same number of elements, [...]
>
HOW do you know that? Please define (for any sets A, B):
>
     A and B /have the same number of elements/ iff ___________________ .
>
(i.e. fill out the blanks). :-)
>
Hint: That's what Ben Bacarisse is asking for.
>
Sure, it's "obvious" for us. But how would you define "have the same
number of elements" (in mathematical terms) such that it can be DEDUCED
(!) für certain sets A and B?
>
________________________________________
>
Ok, I'm slighty vicious now... :-)
>
If a = b = c, {a, b, c} still has "the same number of elements" as {3,
4, 5 }? :-P
I see {a, b, c} and {3, 4, 5} and think three elements.
>
Even if a = b = c = 1?
>
C'mon man! :-P

Please, that's a red herring, and you know it!  No where did I say that
a, b and c stood for anything (i.e. that they might be variables in the
maths sense).  I this sort of context they are just distinct symbols.

--
Ben.

Date Sujet#  Auteur
4 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal