Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : jpierre.messager (at) *nospam* gmail.com (Python)
Groupes : sci.mathDate : 09. Dec 2024, 20:18:14
Autres entêtes
Organisation : Nemoweb
Message-ID : <CRbu3VG8fXxISQSTM4XAQLjZYg4@jntp>
References : 1 2 3 4 5 6 7 8 9 10
User-Agent : Nemo/1.0
Le 08/12/2024 à 23:34, Crank Wolfgang Mückenheim from Hochschule Augsburg aka WM a écrit :
On 08.12.2024 19:01, Jim Burns wrote:
On 12/8/2024 5:50 AM, WM wrote:
∀n ∈ ℕ: E(1)∩E(2)∩...∩E(n) = E(n)
What can't you understand here?
{E(i):i} is the set.of.all non.empty end.segments.
⋂{E(i):i} is the intersection.of.all
non.empty end.segments.
∀n ∈ ℕ:
{E(i):i}∪{E(n+1)} = {E(i):i}
Each is "already" in.
Not the empty endsegment.
∀n ∈ ℕ: E(n) is non-empty. But not every E(n+1).
You could hardly write something worse and more wrong that that.
The very core property of N is that if n ∈ ℕ then n+1 ∈ ℕ.
Are you again "teaching" your nonsense and abusing students at Hochschule Augsburg, (not) dear (bun infamous) Crank Wolfgang Mückenheim?